

Factual Report on Additional Geotechnical Investigation

Proposed Rapid Creek Flood Mitigation Corner of Henry Wrigley Drive and McMillans Road, Marrara, NT

Prepared for Jacobs Group (Australia) Pty Ltd

Project 78245.02 December 2017

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	78245.02	Document No.	R.001.Rev1					
Document title	Factual Report o	Factual Report on Additional Geotechnical Investigation						
	Proposed Rapid Creek Flood Mitigation							
Site address	Corner of Henry	Wrigley Drive and McMi	llans Road, Marrara, NT					
Report prepared for	Jacobs Group (A	ustralia) Pty Ltd						
File name	78245.02.R.001.	Rev1						

Document status and review

Status	Prepared by	Reviewed by	Date issued
Draft A	Troy McClelland	John Harvey	30 October 2017
Draft B	Troy McClelland	-	9 November 2017
Revision 0	Troy McClelland	Andrew Gane	17 November 2017
Revision 1	Troy McClelland	-	19 December 2017

Distribution of copies

Status	Electronic	Paper	Issued to
Draft A	1	0	Mr Ryan Krake (Jacobs Group (Australia) Pty Ltd)
Draft B	1	0	Mr Ryan Krake (Jacobs Group (Australia) Pty Ltd)
Revision 0	1	0	Mr Ryan Krake (Jacobs Group (Australia) Pty Ltd)
Revision 1	1	0	Mr Ryan Krake (Jacobs Group (Australia) Pty Ltd)

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	TAND	19 December 2017
Reviewer		

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 14 Caryota Court Coconut Grove NT 0810 PO Box 36858 Winnellie NT 0821 Phone (08) 8948 6800 Fax (08) 8948 6899

Table of Contents

Page

1.	Introd	luction	1
2.	Site [Description and Regional Geology	1
3.	Field	Work Methods	4
4.	Field	Work Results	5
	4.1	Test Pits	5
	4.2	In-Situ Permeability Testing	10
5.	Labo	ratory Testing	11
6.	Refe	ences	13
7.	Limita	ations	13

Appendix A:	About this Report
	Sampling Methods
	Soil Descriptions
	Symbols and Abbreviations
	Rock Descriptions
	Test Pit Logs
	In-Situ Permeability Results
Appendix B:	Laboratory Results
Appendix C:	Drawing 1 – Test Location Plan

Factual Report on Additional Geotechnical Investigation Proposed Rapid Creek Flood Mitigation Corner of Henry Wrigley Drive and McMillans Road, Marrara, NT

1. Introduction

This factual report presents the results of an additional geotechnical investigation undertaken for the proposed Rapid Creek Flood Mitigation at Corner of Henry Wrigley Drive and McMillans Road, Marrara, NT. The investigation was commissioned by Jacobs Group (Australia) Pty Ltd and was undertaken in accordance with Douglas Partners' proposal DWN170135 (Rev2) dated 24 August 2017.

It is understood that the proposed Rapid Creek Flood Mitigation project include is to include the construction of a retention pond at the site which will require significant bulk earthworks.

Previous geotechnical investigations have been undertaken by Douglas Partners Pty Ltd (DP), the results of which are detailed in the following reports:

- *Factual Report on Geotechnical Investigation, Proposed Flood Mitigation Works* (Ref 1); and
- Report on Geotechnical Investigation, Proposed Water Main and Electrical Conduits (Ref 2).

Since the previous investigations, Per- and Poly-Fluoroalkyl Substances (PFAS) have been confirmed (by others) to be present at the site and an assessment of the permeability of the subsurface soils was required to assist in determining the migration potential of the PFAS.

Hence, additional investigation was carried out to provide factual information on the following:

- J Subsurface conditions at test locations;
-) Presence of groundwater and/or bedrock;
-) Results of in-situ permeability tests; and
- Results of laboratory testing (Atterberg limits and remoulded permeability).

The investigation included the excavation of forty-five (45) test pits, in-situ testing and laboratory testing of selected samples. The factual results are presented in this report.

2. Site Description and Regional Geology

The proposed development is located about 10 km north east of the Darwin CBD and immediately north of the Darwin International Airport on the corner of McMillans Road and Henry Wrigley Drive, Rapid Creek.

The main site is a triangular shaped area of about 9.5 ha. It is bounded by vacant land to the west, McMillans Road to the north and Henry Wrigley Drive to the east. To the south of the site is vacant land immediately adjoining Darwin International Airport.

The proposed works also extend across Henry Wrigley Drive, covering an additional 1 ha (approximately).

The extent of the works is shown on Drawing 1 in Appendix C.

Figures 1 to 4 below show the site conditions at the time of the investigation.

Figure 1 – North-eastern area of the site, looking north

Figure 2 – North-western area of the site, looking northwest

Additional Geotechnical Investigation, Proposed Rapid Creek Flood Mitigation Corner of Henry Wrigley Drive and McMillans Road, Marrara, NT

Figure 3 – Existing channel through centre of the site, looking east

Figure 4 - South-eastern area of the site (east of Henry Wrigley Drive), looking west

Reference to available geological information (Darwin 1:100,000 geological series map, Sheet 5073) indicates that soil conditions at the site are likely to comprise a typical lateritic profile of Cainozoic age that comprises either unconsolidated sand, clayey sand with limonite gravels (Czs) or variably cemented and mottled laterite (Czl).

These soils are shown to be underlain by Cretaceous age fine grained sediments belonging to the Darwin Member (Kld) of the Bathurst Island Formation, which overlies Proterozoic age metasediments of the Burrell Creek Formation (Pfb).

The Darwin Member typically comprises horizontally bedded, silicified, kaolinised and / or ferruginised siltstone or claystone with a thin basal unit of sandstone and / or quartz conglomerate. The silicified siltstone of the Darwin Member is typical in the upper metres of the formation and it is locally known as Porcellanite.

The Burrell Creek Formation typically consists of metamorphosed siltstones and phyllites that are steeply dipping to the east or west and strike in a north-south direction. Quartz veins of variable thickness are widespread within the Burrell Creek Formation. The contact between the Bathurst Island Formation and the Burrell Creek Formation (the Unconformity) is irregular, undulating and faulted in places, and usually identified by a marker bed of rounded quartz pebbles in clay matrix.

3. Field Work Methods

The field work was undertaken over the period between 5 September and 10 October 2017 and comprised the following;

- Excavation of forty-five test pits (Pits 101 to 145) using either a 5.5 tonne excavator fitted with a 450 mm wide bucket or a 15 tonne excavator fitted with a 600 mm wide bucket. The test pits were excavated to depths ranging from 0.35 m to 4.0 m;
-) The subsurface conditions encountered in the test pits were logged by a geotechnical engineer, who also retrieved regular samples for strata identification and laboratory testing purposes;
-) Dynamic cone penetrometer (DCP) tests were carried out at selected test pit locations to provide an assessment of the penetrometer resistance of near surface soils; and
-) Constant head and falling head permeability testing was carried out at fifteen (15) test pits to provide in-situ permeability values for different soil horizons within the subsurface profile. At each selected test pit, constant head testing, using a permeameter, was carried out in accordance with AS1547 over the top 0.5 m. Given the strength of the underlying material (i.e. below 1 m depth), permeameter testing was unable to be effectively undertaken and hence simple falling head permeability testing was undertaken by introducing water in a 300 mm diameter hole and recording the rate at which the water level dropped within the hole.

The test pits were positioned on site at locations specified by the client. Their position was recorded using a Garmin handheld GPS which is accurate to within about 5 m. The test pit locations are shown on Drawing 1 in Appendix C.

4. Field Work Results

4.1 Test Pits

The conditions encountered in the test pits are presented on the logs in Appendix A, and they are preceded by notes explaining classification methods and descriptive terms. A summary of the conditions encountered in the test pits is given in Table 1, on the following pages.

Groundwater was encountered in Pit 125, at 1.5 m depth. No free groundwater was encountered in any of the remaining test pits. It should be noted that groundwater levels are dependent on factors such as climatic conditions and soil permeability and therefore can vary with time.

Based on the results of the current and previous investigations, the existing soils are generally considered suitable for use as 'General Fill', from a geotechnical perspective. Notwithstanding this, the filling encountered across the site comprised large fragments of concrete and other building waste which would be required to be removed in the event that the material was to be re-used.

Table 1: Summary of Sub-Surface Conditions in the Test Pits

Test	Location	101	102	103	104	105	106	107	108	109	110	111	112	113
Unit	Material Description		Depth to Base of Material, Below Surface Level (m)											
	Topsoil/Topsoil filling	-	0.1	0.1	0.1	0.1	0.05	0.1	0.1	0.05	0.05	0.1	0.05	-
Uncemented overburden	Filling	1.3	1.65	0.9	1.1	0.9	0.75	0.5	0.9	0.4	0.85	-	1.0	1.1
soils	Other Uncemented soils	-	-	1.0	-	-	2.5	1.0	2.25	1.2	2.65	0.2	1.1	3.3
(Typically we	lateritic soils eakly to strongly nented)	-	-	-	1.5	1.0	3.5	2.2	2.8	1.9	3.8	0.35	2.4	-
Be	drock	-	2.0	1.4	1.9	1.2	3.6	2.4	3.0	2.4	-	-	3.0	-
Terminati	on Depth (m)	1.3	2.0	1.4	1.9	1.2	3.6	2.4	3.0	2.4	3.8	0.35	3.0	3.3
Reason for T	est Termination	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	limit
Depth to Fre	e Groundwater	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Page 7 of 14

Table 1 (cont.): Summary of Sub-Surface Conditions in the Test Pits

Test	Location	114	115	116	117	118	119	120	121	122	123	124	125	126
Unit	Material Description					Mate	rial Depth	Below Su	urface Lev	vel (m)				
	Topsoil/Topsoil filling	0.05	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.1	0.1	0.3	0.2	0.1
Uncemented overburden	Filling	2.2	-	-	-	-	-	-	-	-	-	-	-	-
soils	Other Uncemented soils	3.5	0.4	0.3	0.65	0.4	0.4	0.6	0.5	0.6	0.8	0.6	-	1.0
(Typically we	l lateritic soils eakly to strongly nented)	4.0	-	0.9	1.0	0.8	0.8	0.8	1.0	1.1	1.7	-	-	1.1
Be	drock	-	1.1	2.1	-	1.9	2.15	1.0	1.7	1.7	2.2	1.8	1.0	-
Terminati	Termination Depth (m)		1.1	2.1	1.0	1.9	2.15	1.0	1.7	1.7	2.2	1.8	1.0	1.1
Reason for T	Reason for Test Termination		refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal
Depth to Free Groundwater		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	1.5	NE	NE

Table 1 (cont.): Summary of Sub-Surface Conditions in the Test Pits

Test	Location	127	128	129	130	131	132	133	134	135	136	137	138	139
Unit	Material Description					Mate	rial Depth	Below St	urface Lev	vel (m)				
	Topsoil/Topsoil filling	0.35	-	-	-	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Uncemented overburden	Filling	-	-	-	-	-	-	-	-	-	-	-	-	-
soils	Other Uncemented soils	1.5	0.9	0.2	-	-	1.2	1.0	0.8	0.8	0.9	0.5	0.3	-
(Typically we	lateritic soils eakly to strongly nented)	1.6	-	0.6	-	-	1.35	1.1	0.9	1.3	1.0	0.8	1.6	1.5
Be	drock	-	1.1	0.8	0.8	1.2	-	-	-	1.4	-	0.9	2.4	2.4
Terminati	Termination Depth (m)		1.1	0.8	0.8	1.2	1.35	1.1	0.9	1.4	1.0	0.9	2.4	2.4
Reason for T	Reason for Test Termination		refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal	refusal
Depth to Free Groundwater		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Table 1 (cont.): Summary of Sub-Surface Conditions in the Test Pits

Test	Location	140	141	142	143	144	145	
Unit	Material Description					Mate	rial Depth	h Below Surface Level (m)
	Topsoil/Topsoil filling	0.1	0.1	0.1	0.3	0.25	0.2	
Uncemented overburden	Filling	-	-	-	-	-	-	
soils	Other Uncemented soils	1.7	-	1.0	1.2	-	0.4	
(Typically we	Cemented lateritic soils (Typically weakly to strongly cemented)		1.6	2.2	1.5	1.1	1.3	
Be	Bedrock		2.7	3.1	1.5	2.6	2.0	
Terminati	Termination Depth (m)		2.7	3.1	1.5	2.6	2.0	
Reason for T	Reason for Test Termination		refusal	refusal	refusal	refusal	refusal	
Depth to Free Groundwater		NE	NE	NE	NE	NE	NE	

4.2 In-Situ Permeability Testing

Permeability testing was carried out within selected test pits, targeting the various soil horizons encountered. The results of the testing are summarised in Table 2 and the detailed results are provided in Appendix A.

Where tests were completed within a short timeframe, say less than 20 mins, the test was repeated and annotated with an 'A' after the test pit number.

Pit	Depth (m)	Test Method	Soil Description	Permeability (m/sec)
101	0.5 – 1.0	Falling Head	Clayey Sandy Gravel Filling	8 x 10 ⁻⁷
108	0 - 0.5	Constant Head	Clayey Sandy Gravel Filling	6 x 10 ⁻⁶
108	1.0 – 1.5	Falling Head	Sandy Clay	1 x 10 ⁻⁶
109	0.45 – 0.9	Falling Head	Gravelly Clay	1 x 10 ⁻⁶
114	0 - 0.5	Constant Head	Clayey Silty Gravel Filling	1 x 10 ⁻⁵
109	2.2 – 2.85	Falling Head	Gravelly Clayey Sand	1 x 10 ⁻⁶
115	0 - 0.5	Constant Head	Slightly Clayey Sandy Gravel	1 x 10 ⁻⁵
115A	0 - 0.5	Constant Head	Slightly Clayey Sandy Gravel	1 x 10 ⁻⁵
115	0.4 – 0.9	Falling Head	Siltstone Bedrock	1 x 10 ⁻⁶
117	0 - 0.5	Constant Head	Sandy Gravel	1 x 10 ⁻⁵
117A	0 - 0.5	Constant Head	Sandy Gravel	2 x 10 ⁻⁵
117	0.5 – 1.0	Falling Head	Silty Sandy Gravel	4 x 10 ⁻⁷
121	0 - 0.5	Constant Head	Gravelly Sandy Silt	4 x 10 ⁻⁶
121	0.5 – 1.0	Falling Head	Clayey Sandy Gravel	5 x 10 ⁻⁷
124	0 - 0.5	Constant Head	Sandy Gravel	8 x 10 ⁻⁵
124A	0 - 0.5	Constant Head	Sandy Gravel	5 x 10 ⁻⁵
126	0 - 0.5	Constant Head	Silty Sand	1 x 10 ⁻⁴
126A	0 - 0.5	Constant Head	Silty Sand	9 x 10 ⁻⁵
126	1.0 – 1.5	Constant Head	Clayey Sandy Gravel	4 x 10 ⁻⁶
130	0.4 - 0.8	Falling Head	Siltstone Bedrock	8 x 10 ⁻⁷
137	0 - 0.5	Constant Head	Slightly Clayey Sandy Gravel	1 x 10 ⁻⁴
137A	0-0.5	Constant Head	Slightly Clayey Sandy Gravel	7 x 10 ⁻⁵
137	0.8 – 1.25	Falling Head	Siltstone Bedrock	3 x 10 ⁻⁷
138	0 – 0.5	Constant Head	Silty Sandy Gravel	2 x 10 ⁻⁵

Table 2: Summary of In-situ Permeability Testing

Additional Geotechnical Investigation, Proposed Rapid Creek Flood Mitigation Corner of Henry Wrigley Drive and McMillans Road, Marrara, NT

	-	-		
Pit	Depth (m)	Test Method	Soil Description	Permeability (mm/sec)
138A	0 – 0.5	Constant Head	Silty Sandy Gravel	3 x 10 ⁻⁵
138	0.8 – 1.2	Falling Head	Clayey Sandy Gravel	4 x 10 ⁻⁶
138A	0.8 – 1.2	Falling Head	Clayey Sandy Gravel	6 x 10 ⁻⁶
142	0 – 0.5	Constant Head	Sandy Silt	2 x 10 ⁻⁵
142A	0 – 0.5	Constant Head	Sandy Silt	2 x 10 ⁻⁵
142	0.6 – 1.25	Falling Head	Clayey Sandy Gravel	4 x 10 ⁻⁶
145	0 – 0.5	Constant Head	Sandy Silt	8 x 10 ⁻⁶
145	0.5 – 1.05	Falling Head	Clayey Sandy Gravel	3 x 10 ⁻⁶

Table 2 (cont.): Summary of In-situ Permeability Testing

5. Laboratory Testing

Selected samples of excavated soil recovered from the test pit locations were also tested for determination of Atterberg limits including linear shrinkage and remoulded permeability when typically compacted to 100% Modified compaction.

The results of laboratory testing are summarised in Table 3 on the following page with the detailed laboratory test reports presented in Appendix B.

The results of the testing carried out during the previous investigation have been included in Table 3.

Pit (Lab ID)	Depth (m)	Soil Description	LL (%)	PI (%)	LS (%)	ОМС (%)	MMDD (t/m ³)	Permeability (m/sec)
		C	urrent Inv	estigation	J			
101 (528l)	0.0 - 0.5	Clayey Sandy Gravel Filling	30	13	5.5	12.0	1.98	2 x 10 ⁻¹⁰
103 (528J)	0.1 – 0.4	Clayey Sandy Gravel Filling	40	23	7.5	17.5	1.89	2 x 10 ⁻¹⁰
103 (528K)	0.4 - 0.9	Sandy Clay Filling	44	25	6.0	15.5	1.84	2 x 10 ⁻¹⁰
108 (528H)	0.9 – 1.9	Sandy Clay	42	26	7.0	17.0	1.80	2 x 10 ⁻¹⁰
116 (528L)	0.1 – 0.3	Sandy Gravel	15	3	1.0	9.0	2.25	3 x 10 ⁻⁸
118 (528B)	0.1 – 0.4	Sandy Clayey Gravel	19	7	3.0	7.5	2.30	5 x 10 ⁻¹⁰
122 (528C)	0.3 – 0.6	Gravelly Sandy Clayey Silt	48	23	10.5	15.0	1.87	3 x 10 ⁻¹⁰
123 (528A)	0.8 – 1.4	Clayey Sandy Gravel	44	26	11.0	12.5	1.99	2 x 10 ⁻⁹
124 (528G)	0.3 – 0.6	Sandy Clayey Gravel	25	10	4.5	9.5	2.20	1 x 10 ⁻⁹
140 (528D)	0.1 – 0.8	Gravelly Clay	34	17	7.5	15.5	1.85	4 x 10 ⁻¹⁰
142 (528E)	0.3 – 1.0	Sandy Clay	31	14	7.0	11.5	1.94	4 x 10 ⁻¹⁰
143 (528F/B)	0.3 – 1.2	Sandy Clayey Silt	28	15	6.5	11.5	1.59	2 x 10 ⁻¹⁰
		Results from	Previous	Investiga	tion (Ref	1)		
TP4	0.8 – 1.2	Gravelly Clayey Sand	30	12	4.5	10.5	2.06	5 x 10 ⁻⁹
TP5	0.3 – 0.5	Gravelly Sandy Clay	40	17	9.0	11.5	1.99	8 x 10 ⁻⁸

Table 3: Summary of Laboratory Testing

Notes:

Permeability results from previous investigation based on samples remoulded to 98% Standard compaction.

Permeability result for Sample 528F/B based on sample remoulded to 98% Modified compaction.

LL – Liquid Limit PI – Plasticity Index LS – Linear Shrinkage

MMDD – Modified Maximum Dry Density OMC – Optimum Moisture Content

Additional Geotechnical Investigation, Proposed Rapid Creek Flood Mitigation Corner of Henry Wrigley Drive and McMillans Road, Marrara, NT

6. References

- 1. Douglas Partners Pty Ltd, *Factual Report on Geotechnical Investigation, Proposed Flood Mitigation Works*, Project 78245.00 dated March 2016
- 2. Douglas Partners Pty Ltd, *Report on Geotechnical Investigation, Proposed Water Main and Electrical Conduits*, Project 78245.01 dated December 2016

7. Limitations

Douglas Partners (DP) has prepared this report for this project at Marrara, NT in accordance with DP's proposal DWN170135 (Rev 2) dated 24 August 2017 and acceptance received from Jacobs Group (Asutralia) Pty Ltd on 5 September 2017. The work was carried out under Jacobs Terms of Agreement for Subconsulting Services with DP amendments. This report is provided for the exclusive use of Jacobs Group (Australia) Pty Ltd and their agents for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The scope for work for this investigation/report did not include the assessment of surface or subsurface materials or groundwater for contaminants, within or adjacent to the site. Should evidence of filling of unknown origin be noted in the report, and in particular the presence of building demolition materials, it should be recognised that there may be some risk that such filling may contain contaminants and hazardous building materials.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life.

This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the geotechnical components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

About this Report Sampling Methods Soil Descriptions Symbols and Abbreviations Rock Descriptions Test Pit Logs In-Situ Permeability Results

Introduction

These notes have been provided to amplify DP's report in re gard to classific ation methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. F or this reason, the y must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of E ngagement for the commission supplied at the time of proposal. Unauthorised use of this r eport in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit lo gs presented in this report are a n engineering and/or ge ological interpretation of the subsurf ace conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or c ore drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measur ed in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of th e hole if water measurements are to be made.

More reliable measurements can b e made by installing standpipes which are read at in tervals over several days, or p erhaps weeks for low permeability soils. P iezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report h as been prepared by qualified personnel, is base d on the information obtained from field and laboratory testing, and has been undertaken to current eng ineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to r eview the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spac ing and s ampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that cond itions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made ava ilable. In circumstances where the disc ussion or comments section is not relevant to the contractual situation, it m ay be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to mak e additional report copies available for contract purp oses at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for g eotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that con ditions exposed are as expected, to full tim e engineering presence on site.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a s ample of the soil in a rel atively undisturbed state. Such samples yield information on structure and strength, and are n ecessary for laboratory determination of shear stre ngth and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter in to the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a larg e excavator. A po tential disadvantage of this i nvestigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surf ace at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Iden tification of so il strata is ge nerally much more reliable than with continuous spiral flight augers, and is usu ally supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is adva nced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to all ow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are r eturned to the surface, or ma y be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) i s of relativel y low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major chan ges in stratification can be determined from the cuttings, togeth er with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not al ways possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a r elatively undisturbed sample. T he test proc edure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 7 60 mm. It is normal for t he tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the la st 300 mm. In dense sands, ver y hard cla ys or weak rock, the full 450 mm pe netration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

In the cas e where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm a nd 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can b e related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the g round using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to pen etrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hamm er dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the dens ity of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter r od with a 20 mm diameter cone end is driven using a 9 kg hammer drop ping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of th e test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726-1993, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

s Pai

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 2007. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approximate Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and longer sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

- h horizontal
- v vertical
- sh sub-horizontal

art

sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

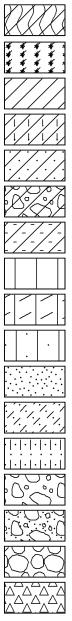
Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General


0	

Asphalt Road base

Concrete

Filling

Soils

Topsoil
Peat
Clay
Silty clay
Sandy clay
Gravelly clay
Shaly clay

Silt

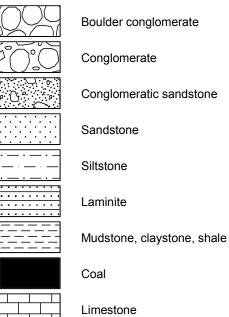
Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

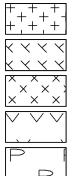

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks


Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

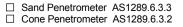
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704124 NORTHING: 8628928 **PIT No:** 101 **PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

			Description	ic.	Sampling & In Situ Testing					Dynamic Penetrometer Test		
RL	De (n	pth n)	of	Graphic Log	Type	Depth		Results & Comments	Water	Dynamic P (blows	enetrometer per 150mm)	lest
			Strata	0	ту	0.0	San	Comments		5 1	0 15	20
	-		FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse porcellanite gravel, and fine to medium lateritic gravel, fine to coarse grained sand, cobbles (30%) to 200mm Ø, humid		В					-		
	- - -		concrete and asphaltic concrete at 0.8m			0.5				-		
	- - 1 -	0.9-	FILLING: generally well compacted, red-brown, clayey sandy gravel filling, fine to medium lateritic gravel, fine to coarse grained sand, moist							-1		
	-	1.3	Pit discontinued at 1.3m- refusal	VVV								
	- - - - -									2		
	-									-		
	- - - - 3									- 3		
	-									-		
	- - - 4									- 4		
	-									-		
	-									-		

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	IPLING	3 & IN SITU TESTING		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	ž	Water level	V	Shear vane (kPa)

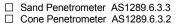
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704097 NORTHING: 8628925 **PIT No: 102 PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

			Description	.c	Sampling & In Situ Testing		L_		Dynamic Penetrometer Test			
ā		epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynam 5	(blows per	meter Lest mm)
	-	0.1	TOPSOIL/FILLING: generally well compacted, brown, clayey sandy gravel, topsoil/filling, fine to coarse gravel, porcellanite, fine to coarse grained sand, rootlets, humid/ FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse porcellanite gravel, and fine to medium lateritic gravel, fine to coarse grained sand, cobbles (30%) to 200mm Ø. (1m long			0.5	0			-		
	- - - -1		concrete column, building débris)		В	1.0				- 1		
	-	1.2	FILLING: generally well compacted, brown, clayey sandy gravel filling, fine to coarse grained sand, humid							-		
	-	1.65	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone becoming less fractured	· _ · · -						-		
	-2 - - - - - - - - - - - - - - - - - -	2.0	Pit discontinued at 2.0m- refusal									
	-									- - - - -		

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMF	PLINC	3 & IN SITU TESTING	LEGI	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

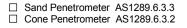
Douglas Partners Geotechnics | Environment | Groundwater

CLIENT:Jacobs Group (Australia) Pty LtdPROJECT:Proposed Rapid Creek Flood MitigationLOCATION:Cnr Henry Wrigley Drive & McMillans Road,
Marrara

SURFACE LEVEL: --EASTING: 704066 NORTHING: 8628925 PIT No: 103 PROJECT No: 78245.02 DATE: 5/9/2017 SHEET 1 OF 1

Π	Depth	Description	hic				& In Situ Testing	Le	Dynan	nic Pene	tromete	r Test
RL	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		(blows p	er mm)	
	0.1	TOPSOIL/FILLING: generally well compacted, brown, clayey sandy gravel, topsoil/filling, fine to coarse gravel, porcellanite, fine to coarse grained sand, rootlets, humid		B	0.1	S				10	15	20
	0.4	boulder, fine to coarse grained sand, fine to medium gravel, humid			0.4				-			
	0.0	FILLING: generally well compacted, red-brown, yellow-brown, reworked cemented soil, fine to medium gravel, fine to coarse grained sand, humid		В	0.9				-			-
	0.9 · 1 1.0	SANDY SILT: stiff, grev-brown, sandy silt, fine to			0.9				-1		•	
-		PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone less fractured at 1.3m							-		•	
	1.4	Pit discontinued at 1.4m- refusal							-			
									-			
-	-2								-2			
									-			
									-			
	- 3								-3			
									-			
-									-			
	- 4											
	-7								-			
									-			
									-			
									-			

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMP	LINC	3 & IN SITU TESTING	LEGE	END	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704127 NORTHING: 8628889 **PIT No:** 104 **PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

	Description	ic.		Sam	npling &	& In Situ Testing					
Depth (m)	of	iraph Log	be	pth	nple	Results &	Wate	Dynam (b	ic Pene ows per	trometer 150mm	Test)
	Strata	U	τ	De	San	Comments	Ĺ	5	10	15	20
0.1	TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse gravel, fine to coarse grained sand, trace bricks, humid							-			
0.7	FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid							- 1			
	CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse porcellanite gravel, fine to coarse grained sand, damp							-			
	strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone										
1.9	Pit discontinued at 1.9m- refusal								:		:
4								-3			
	0.1 0.7 1 1.1 1.5 1.9 2	(m) Of Strata 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse gravel, fine to coarse grained sand, trace bricks, humid 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid 1 1.1 CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse porcellanite gravel, fine to coarse grained sand, damp 1.5 PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone 1.9 Pit discontinued at 1.9m- refusal	Depth (m) of 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse gravel, fine to coarse grained sand, trace bricks, humid 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid 1.1 CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse porcellanite gravel, fine to coarse grained sand, damp 1.5 PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone 1.9 Pit discontinued at 1.9m- refusal	0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse gravel, fine to coarse grained sand, trace bricks, humid 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, fine to coarse grained sand, trace bricks, humid 1.1 CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse porcellanite gravel, fine to coarse grained sand, damp 1.5 PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone 1.9 Pit discontinued at 1.9m- refusal	Depth (m) image: construction of strata image: construction of strata 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid image: construction of strata 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, filling, fine to coarse grained sand, humid image: construction of strata 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, filling, fine to coarse grained sand, humid image: construction of strata 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid image: construction of strata 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid image: construction of strata 1.1 CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse grained sand, damp image: construction of strata 1.5 PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone image: construction of strata 1.9 Pit discontinued at 1.9m- refusal image: construction of strata image: construction of strata 2 Pit discontinued at 1.9m- refusal image: construction of strata image: construction of strata	Depth (m) Image: Construction of the set o	0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid 1 0 FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse gravel, fine to coarse grained sand, trace bricks, humid 1 1 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid 1 1.1 CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse porcellanite gravel, fine to coarse grained sand, damp 0.7 PORCELLANITE (DARWIN MEMBER): medium to high strangth, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone 1 1.9 Pit discontinued at 1.9m- refusal 1	Depth (m) Description 01 Strata 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid 0.1 TOPSOIL: medium dense, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse grained gravel, fine to coarse grained sand, trace bricks, humid 0.7 FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filling, fine to coarse gravel, fine to coarse grained sand, humid 0.7 FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse grained sand, humid 1.1 CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented sitistone, fine to coarse porcellanitie gravel, fine to coarse grained sand, damp 1.5 PORCELLAINITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone 1.9 Pit discontinued at 1.9m - refusal	Depth (m) of TopSolL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid TopSolL: medium dense, grey-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid TopSolL: medium dense, grey-brown, off-white, clayey sandy gravel, fine to coarse grained sand, trace bricks, humid TopSolL: medium dense, grey-brown, off-white, clayey sandy gravel, fine to coarse grained sand, trace bricks, humid TopSolL: medium dense, grey-brown, off-white, clayey sandy gravel, fine to coarse grained sand, humid TopSolL: medium dense, grey-brown, off-white, clayey sandy gravel, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, humid TopSolL: medium dense, fine to coarse grained sand, fine to coarse graine data to top fine toto top fine top fine	Depth (m) Dosphol Strata Egg Other Egg TOPSOIL: medium dense, grey-brown, dayey sandy gravel, fine to medium gravel, fine to coarse grained and, humid TILLING: generally well compacted, grey-brown, off-while, clayey sandy gravel, fing, fine to coarse gravel, fine to coarse grained sand, trace bricks, humid Image: Compacted of the top coarse grained sand, trace bricks, humid Image: Compacted of the top coarse grained sand, trace bricks, humid Image: Compacted of the top coarse grained sand, humid Image: Coarse grained sand, trace bricks, humid Image: Coarse grained sand, frace bricks, humid Image: Coarse grained gravel, fine to coarse grained sand, frace bricks, humid Image: Coarse grained gravel, fine to coarse grained sand, frace bricks, place bricks, place bricks, place bricks, place bricks, humid Image: Coarse grained gravel, fine to coarse grained sand, frace bricks, place bricks, place bricks, place bricks, place bricks, place bricks, humid Image: Coarse grained gravel, fine to coarse grained sand, provide bricks, place bri	Depth of Strata Egg 0.1 TOPSOIL: medium dense, grey-brown, clayey sandy sand, humid 1 FILLING: generally well compacted, grey-brown, off-white, clayey sandy gravel, filing, fine to coarse grained sand, trace bricks, humid Image: Coarse grained sand, trace bricks, humid 0.7 FilLLING: generally well compacted, brown, clayey sandy gravel, filing, fine to coarse grained sand, trace bricks, humid Image: Coarse grained sand, trace bricks, humid 1.1 CLAYEY SANDY GRAVEL: weakly commated, red-brown, yellow-brown, clayey sandy gravel, indice to coarse grained sand, humid Image: Coarse grained sand, humid 1.1 CLAYEY SANDY GRAVEL: weakly commated, red-brown, yellow-brown, clayey sandy gravel, coarse procellantie gravel, fine to coarse grained sand, damp Image: Coarse grained sand, coarse gravel, fine to coarse grained sand, humid 1.5 PORCELLANTE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silloffied sillstone Image: Coarse grained sand, image: Coarse gravel, file to coarse grained sand, image: Coarse gravel, file to coarse grained sand, image: Coarse grained sand,

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS: possible trench through centre of pit

	SAM	PLING	& IN SITU TESTING	LEG		1	
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)		
С	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)		
D	Disturbed sample	⊳	Water seep	S	Standard penetration test		
E	Environmental sample	¥	Water level	V	Shear vane (kPa)		Geoted
	-					_	

□ Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

ouglas Partners chnics | Environment | Groundwater

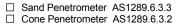
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704095 NORTHING: 8628888 **PIT No: 105 PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

		Description	Li		Sam	pling &	& In Situ Testing	_			
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic P (blow	enetromete /s per mm)	
	- 0.7	porcellanite, fine to coarse grained sand, rootlets, humid		Ξ.	Ď	Sa	Comments		5 10	15	20
	- - 0.5	FILLING: generally well compacted, brown, clayey sandy gravel, filling, fine to coarse porcellanite gravel, and fine to medium lateritic gravel, fine to coarse grained sand, cobbles (30%) to 200mm Ø, (1m long concrete column, building debris)							-		
	- 0.9	FILLING: generally well compacted, brown, clayey sandy gravel filling, fine to coarse grained sand, humid									
	-1 1.0 - 1.2	CLAYEY SANDY GRAVEL: dense, weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to	• > . 						-1		
	-	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone									
	-	۲less fractured at 1.0m Pit discontinued at 1.2m- refusal									
	-2								-2		
	-										
	-										
	-										
	- 3								-3		
	-								-		
	-										
	-								-		
	-4								-4		
	-										
	-										
	-										
	-										

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	PLING	& IN SITU TESTING			
A	Auger sample	G	Gas sample		Photo ionisation detector (ppm)	
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: Ja PROJECT: Pr LOCATION: C

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation Cnr Henry Wrigley Drive & McMillans Road, Marrara SURFACE LEVEL: --EASTING: 704123 NORTHING: 8628846 PIT No: 106 PROJECT No: 78245.02 DATE: 6/9/2017 SHEET 1 OF 1

Γ			Description	<u>.</u>		Sam	pling 8	& In Situ Testing					
RL	Dept (m)	h	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dyna	amic Pene (blows p	etromete per mm)	r Test
			Strata	U	Ту		San	Results & Comments		5	10	15	20
	0.	.05-	TOPSOIL/FILLING: stiff, grey-brown, clayey sandy silt topsoil filling, fine to coarse grained sand, with rootlets, dry		в	0.05				-			
	- (0.4-	\coarse grained sand, humid			0.4							
		.75-	FILLING: generally well compacted, grey-brown, clayey sandy gravel, fine to medium angular gravel, fine to coarse grained sand, humid							-			
	- 1		SANDY SILTY CLAY: very stiff, weakly cemented, red-white, white, sandy silty clay, fine to coarse grained sand, laterised gravel, moist							-1 -1			
	- 2	2.5-	SANDY CLAY: cemented, white, red, sandy clay, fine to coarse grained sand, laterised siltstone, humid to moist										
	1	3.5 3.6	PORCELLANITE (DARWIN MEMBER): medium to high \ strength, moderately weathered, off-white, yellow-brown, /							-			
	- 4		highly fractured, silicified siltstone Pit discontinued at 3.6m- refusal										

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U,
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 V
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

LOGGED: R. Arbon & V. Harringt SURVEY DATUM: MGA94

CLIENT: PROJECT: LOCATION:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation Cnr Henry Wrigley Drive & McMillans Road, Marrara SURFACE LEVEL: --EASTING: 704095 NORTHING: 8628847 PIT No: 107 PROJECT No: 78245.02 DATE: 6/9/2017 SHEET 1 OF 1

		Description	ic		Sam	pling &	& In Situ Testing	_		
Я	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dynamic Pen (blows pe	netrometer Test er 150mm)
		Strata	Ū	Ţ	Del	San	Results & Comments	[5 10	15 20
	- 0.1	TOPSOIL/FILLING: stiff, grey-brown, clayey sandy silt topsoil filling, fine to coarse grained sand, with rootlets, humid FILLING: apparently moderately compacted,							-	
	- 0.4 - 0.5	grey-brown, slightly gravelly clayey sandy silt, filling, fine to coarse, humid							-	
	-	FILLING: generally well compacted, mottled brown, off-white, clayey sandy gravel, fine to coarse gravel, assorted cobbles and boulders including some cement, humid							-	
	- -1 1.0	SANDY CLAY: stiff, red, sandy clay, fine to coarse grained sand, M <wp< td=""><td>·/./.</td><td></td><td></td><td></td><td></td><td></td><td>-1</td><td></td></wp<>	·/./.						-1	
	-	CLAYEY SANDY GRAVEL: very dense, lightly cemented, red, yellow-brown, clayey sandy gravel, fine to coarse grained sand, humid							-	
	- - - 1.7	SANDY CLAY: hard to extremely low strength, weakly							-	
	- - - 2	cemented, red and white, sandy clay, fine to coarse grained sand, humid							-2	
	- 2.2	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown,	· <u>/ ·</u>						-	
	- 2.4 - - -	Pit discontinued at 2.4m- refusal							-	
	- - 3 -								-3	
	- - -									
	- - - - 4								- 4	
	-								-	
	-								-	
	-								-	

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK Block sample
 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 p

 D
 Disturbed sample
 Water seep
 S
 Standard penetration test

 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ☑ Cone Penetrometer AS1289.6.3.2

LOGGED: R. Arbon & V. Harringt@URVEY DATUM: MGA94

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704070 NORTHING: 8628843 **PIT No: 108** PROJECT No: 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing		_			
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar (b	nic Pene lows pe	r 150mr	er Lest n)
		Strata	0	ту	De	San	Comments		5	10	15	20
-	0.1	TOPSOIL/FILLING: generally well compacted, brown, clayey sandy gravel, topsoil/filling, fine to coarse gravel, porcellanite, fine to coarse grained sand, rootlets, humid/ FILLING: variably compacted, brown, clayey sandy gravel filling with some building waste (concrete slab and rubble), fine to coarse porcellanite gravel, and fine to medium lateritic gravel, fine to coarse grained sand, cobbles (30%) to 200mm ø							-			
	- 0.9 - 1 	SANDY CLAY: stiff, red-brown, sandy clay, fine to coarse grained sand, M~WP		D	0.9							
	-2				1.9				-2			
	2.23	CLAYEY SANDY GRAVEL: dense, weakly cemented, red-brown, yellow-brown, clayey sandy gravel, cemented weathered/fragmented siltstone, fine to coarse porcellanite gravel, fine to coarse grained sand, damp							-		٦	
	-3 3.0	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone becoming less fractured at 2.9m Pit discontinued at 3.0m- refusal	· ·									
	- - 4 4 								-4			
									-			

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	PLINC	3 & IN SITU TESTING			1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

□ Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704120 NORTHING: 8628802 **PIT No: 109 PROJECT No:** 78245.02 DATE: 6/9/2017 SHEET 1 OF 1

		Description	Ü		Sam	npling &	& In Situ Testing	L	
RL	Depth (m)		Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Penetrometer Test (blows per 150mm)
		Strata	U V	Тy	De	San	Comments	_	5 10 15 20
		TOPSOIL/FILLING: stiff, grey-brown, clayey sandy silt topsoil filling, fine to coarse grained sand, with rootlets, humid FILLING: generally well compacted, grey-brown, clayey sandy gravel, cobbles & concrete to 500mm Ø and							
	-	GRAVELLY CLAY: very stiff, red, gravelly clay with some sand, fine to coarse gravel, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>							
	- - - 1 - - 1.2	2							
	- - - -	GRAVELLY SILTY CLAY: strongly cemented, orange-brown, gravelly silty clay, fine to coarse lateritic gravel, M <wp< p=""></wp<>							
	- 1.9 -2 - -	⁹ PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone	· _ · · · · · · · · · · · · · · · · · ·						-2
	- 2.4	Pit discontinued at 2.4m- refusal	· — · ·						
	- - - - 3 -								-3
	- - - -								
	- - - 4 -								-4
	- - - -								
	-								

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon & V. Harringt@URVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SA	MPLING	& IN SITU TESTING		
A Auger sample	G	Gas sample		Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	e ¥	Water level	V	Shear vane (kPa)

CLIENT: PROJECT: LOCATION:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation Cnr Henry Wrigley Drive & McMillans Road, Marrara SURFACE LEVEL: --EASTING: 704092 NORTHING: 8628799 PIT No: 110 PROJECT No: 78245.02 DATE: 6/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	& In Situ Testing			
R	Depth (m)	of	Graphic Log	Type	oth	ple	Results &	Water	Dynamic Pene (blows pe	etrometer Test er 150mm)
	(,	Strata	Ū	Typ	Depth	Sample	Results & Comments	>	5 10	15 20
	0.05	TOPSOIL/FILLING: loose, light pink-brown, clayey silty gravel topsoil/filling, fine to coarse gravel, rootlets, dry FILLING: light pink-brown, clayey silty gravel, fine to coarse gravel, cobbles to 200mm Ø, fragmented porcellanite								
	- 0.85 - 1 - - - - -	GRAVELLY CLAY: very stiff, red, gravelly clay with some sand, fine to coarse gravel, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>								
	- 2 - 2 	CLAYEY SILTY GRAVEL: dense, strongly cemented, red with some orange & white, clayey silty gravel, fine to							-2	
	- 3 3.0 	GRAVELLY CLAYEY SILT: dense, strongly cemented, white, orange, gravelly clayey silt, fine to medium lateritic gravel, humid							-3	
	- 3.8 4 	Pit discontinued at 3.8m- refusal	<u>►</u> ► ₹						-4	

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon & V. Harringt@URVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

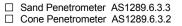
SAMF	PLINC	3 & IN SITU TESTING	LEGE	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704120 NORTHING: 8628759 **PIT No:** 111 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

	Depth	Description	hic				& In Situ Testing	er	Dynamic Pe	netromete	r Test
R	(m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		s per mm)	
	- 0.1 - 0.2 - 0.35 1	TOPSOIL: dense, grey-brown, silty sand, topsoil, fine to coarse grained sand, some rootlets, humid SANDY CLAY: stiff, brown and red brown, sandy clay, with some gravel, M <wp CLAYEY SANDY GRAVEL: moderately cemented, red-brown, clayey sandy gravel, humid Pit discontinued at 0.35m- refusal</wp 				<u> </u>			5 10 	15 	20
	2 2 								-2		
-	- 3								-3		
	-4								-4		

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMF	PLINC	3 & IN SITU TESTING			1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT: LOCATION:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation Cnr Henry Wrigley Drive & McMillans Road, Marrara SURFACE LEVEL: --EASTING: 704096 NORTHING: 8628761 PIT No: 112 PROJECT No: 78245.02 DATE: 6/9/2017 SHEET 1 OF 1

	Description	<u>.</u>		Sam	npling &	& In Situ Testing	_			
Depth	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic P (blows	enetrometer per 150mm)	Test
	Strata	G	Ту	De	San	Comments	-	5 10) 15	20
0.05	TOPSOIL/FILLING: stiff, grey-brown, clayey sandy silt topsoil filling, fine to coarse grained sand, with rootlets, humid FILLING: generally well compacted, grey-brown, clayey sandy gravel with some cobbles to 300mm Ø, building debris (Steel, metal, plastic), humid									
	GRAVELLY CLAY: very stiff, red, gravelly clay with								1	
-2 -2 - - - - - - - - - - 2.4								-2		
-	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone							-		· · · · ·
-3 3.0	becoming less fractured at 2.9m Pit discontinued at 3.0m- refusal						-	-3 : :	<u> </u>	
-4	Pit discontinued at 3.0m- refusar									

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	END
A	Auger sample	G	Gas sample		Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

□ Sand Penetrometer AS1289.6.3.3 ⊠ Cone Penetrometer AS1289.6.3.2

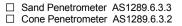
LOGGED: R. Arbon & V. Harringt@URVEY DATUM: MGA94

CLIENT: PROJECT: LOCATION:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation Cnr Henry Wrigley Drive & McMillans Road, Marrara SURFACE LEVEL: --EASTING: 704064 NORTHING: 8628758 PIT No: 113 PROJECT No: 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	<u>i</u>		San	npling &	& In Situ Testing				
R	Depth (m)	of	Graphic Log	Type	Depth	ple	Results &	Water	Dynamic (bl	Penetrometer ows per mm)	Test
	()	Strata	Ū	Туј	Dep	Sample	Results & Comments	>	5	10 15	20
	-	FILLING: generally well compacted, red and yellow-brown, clayey sandy gravel, humid							-		
	- - - -1	- layer of sandy silt from 0.6 m to 0.8 m depth							- 1		
	- 1.1 - - - - - - - - - - - - - - - - - -	SANDY CLAY: stiff, red-brown, sandy clay with some gravel, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-2</td><td></td><td></td></wp<>							-2		
	- 3 - - 3.3	- mottled yellow-brown and red-brown from 3.2m depth							-3		
	- 3.3	Pit discontinued at 3.3m- limit of investigation							-4		

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAME	PLINC	3 & IN SITU TESTING	LEG	END	1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704028 NORTHING: 8628768 **PIT No:** 114 **PROJECT No:** 78245.02 DATE: 6/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	& In Situ Testing	_			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (blow	Penetrome /s per 150m	ter Lest nm)
		Strata	G	Ţ	De	San	Comments	_	5	10 15	20
	0.05	TOPSOIL/FILLING: loose, light pink-brown, clayey silty / gravel topsoil/filling, fine to coarse gravel, rootlets, dry	1XXX						-		
	-	FILLING: brown, clayey silty gravel, fine to coarse gravel, cobbles to 200mm Ø, fragmented porcellanite							-		
	_	gravel, cobbles to 200mm Ø, fragmented porcellanite									
	-								-		
	-										
	-								-		:
	-										
	- 1								-1		
	-										
	- 1.3										:
	-	FILLING: orange and brown clayey gravelly silt filling, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></wp<>							-		
	-										
	_										
	-									J	
	-										:
	-2										
	- 2.2								L		
	-	GRAVELLY CLAYEY SAND: medium dense, brown, gravelly clayey sand, fine to coarse gravel, fine sand,	608								
	- 2.5	damp									
	- 2.5	SANDY CLAY: strong, red-brown, sandy clay, fine to coarse grained sand, M~WP									
	-										
	-										
	-3								-3		
	-		/./.						-		
	-								-		
	-										
	- 3.5	SANDY CLAY: weakly comented red-brown	IA.						-		
	-	SANDY CLAY: weakly cemented, red-brown, yellow-brown							- :		
	-										
	-										
	-4 4.0	Pit discontinued at 4.0m- refusal	<u></u>						4	· · ·	:
	-								[: :	
	-								-	: :	
	ŀ										
	-								[
	-										
	-								-		
	-										

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon & V. Harringt@URVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMP	LINC	3 & IN SITU TESTING	LEGE	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT:Jacobs Group (Australia) Pty LtdPROJECT:Proposed Rapid Creek Flood MitigationLOCATION:Cnr Henry Wrigley Drive & McMillans Road,
Marrara

 SURFACE LEVEL: -

 EASTING:
 703929

 NORTHING:
 8628930

PIT No: 115 PROJECT No: 78245.02 DATE: 5/9/2017 SHEET 1 OF 1

	Denth	Description	hic		Sam		& In Situ Testing		Dynamic	Penetromet	or Tost
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(bl	ows per mm	
	- 0.1	TOPSOIL: dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse grained sand, roots & rootlets, humid SANDY GRAVEL: dense, grey-brown, slightly clayey				Ö			5		20
	- 1	becoming less fractured	· · ·					-	-1		
	- 1.1 - -	Pit discontinued at 1.1m- refusal									
	- 2								-2		
								-			
	- 3 - - - -								.3		
	- - - - - -								-4		
	-										

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND							
A	Auger sample	G	Gas sample		Photo ionisation detector (ppm)			
	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)			
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)			
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)			

□ Sand Penetrometer AS1289.6.3.3 □ Cone Penetrometer AS1289.6.3.2

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703870 NORTHING: 8628944 **PIT No:** 116 **PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

	_		Description	jc _		San		& In Situ Testing	L	Dumomia D	notromoto	r Toot
RL	De (n		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic Pe (blow	s per mm)	riest
			Strata		ŕ	Ď	Sar	Comments		5 10	15	20
	-	0.1	TOPSOIL: dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse grained sand, roots & rootlets, humid	0.00	в	0.1				-		
	-	0.3	SANDY GRAVEL: dense, grey-brown, slightly clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid	000		0.3				-		
	-		SANDY GRAVEL: weakly to moderately cemented, grey-brown, slightly clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid									
	- - 1 -	0.9	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· · ·						-1		
	- - -		becoming less laterised									
	- - -2	1.8-	KAOLONISED SILTSTONE: low strength, off-white, yellow-brown, kaolonised siltstone	· _ · · -						-2		
	-	2.1	Pit discontinued at 2.1m- refusal	·					-			:
	- - - - - - - -									-3		
	- - - - - - - - - -											

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A Auger sample G Gas sample PID Photo ionisation detector (ppm)									
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)					
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S	Standard penetration test					
E Environmental sample	ž	Water level	V	Shear vane (kPa)					

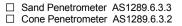
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703787 NORTHING: 8628939 **PIT No:** 117 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling 8	& In Situ Testing					
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	etromete per mm)	r Test
		Strata		T)	De	Sar	Comments		5	10 :	15	20 :
	- 0.1	grained sand, roots & rootlets, humid							-			
	-	SANDY GRAVEL: very dense, yellow-brown, sandy gravel, fine to medium gravel, fine to coarse grained sand, humid							-			
	0.65	CLAYEY SANDY GRAVEL: weakly to moderately cemented, off-white, clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid							-			
	-1 1.0 - -	becoming very low strength, moderately cemented, off-white and red-brown kaolinised siltstone from 0.9m depth Pit discontinued at 1.0m- refusal							-1			
	-							-	-			
	-								-			
	-2							-	-2			
	-								-			
	-								-			
	- 3								- 3			
	-								-			
	-											
	-								-			
	-4								-4			
	-								-			
	-											
	-								-			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

Γ	SAMPLING & IN SITU TESTING LEGEND								
L	A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
	В	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)			
	BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)			
L		Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
L	D	Disturbed sample	⊳	Water seep	S	Standard penetration test			
	E	Environmental sample	ž	Water level	V	Shear vane (kPa)			

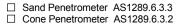
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703822 NORTHING: 8617823 **PIT No:** 118 **PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

	Derett	Description	jic –		Sam		& In Situ Testing	2	Dimer		etromete	ar Teat
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		(blows p	per mm)	
	- 0.1 - - 0.4	TOPSOIL: dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse grained sand, roots & rootlets, humid SANDY GRAVEL: dense, grey-brown, slightly clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid			· 0.1	Š				10	15	20
	- 0.8 - 1 1 	SANDY GRAVEL: weakly to moderately cemented, grey-brown, slightly clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							-1-1			
	- 1.9 - 2 - - - -	Pit discontinued at 1.9m- refusal	<u> </u>						-2			
	- 3 								-3			
	- 4 								-4			

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G	Gas sample	PID F	Photo ionisation detector (ppm)					
B Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)					
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) F	Point load diametral test Is(50) (MPa)					
C Core drilling	Ŵ	Water sample	pp F	Pocket penetrometer (kPa)					
D Disturbed sample	⊳	Water seep	S S	Standard penetration test					
E Environmental sample	ž	Water level	V S	Shear vane (kPa)					

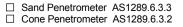
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703834 NORTHING: 8628878 **PIT No:** 119 **PROJECT No:** 78245.02 **DATE:** 5/9/2017 SHEET 1 OF 1

		Description	Ŀ		San	npling &	& In Situ Testing		_			
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dyna	amic Pene (blows p	tromete er mm)	r Test
	()	Strata	Ō	т	Det	San	Results & Comments		5	10	15	20
	• 0.2	TOPSOIL: dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse grained sand, roots & rootlets, humid							-			
	• 0.4	SANDY GRAVEL: dense, grey-brown, slightly clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid							-			
	•	SANDY GRAVEL: weakly to moderately cemented, grey-brown, slightly clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid									•	
	- 0.8 - -1	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· _ · ·						-1		•	
			·									
			<u> </u>									
										:		
			· · ·									
			· · .								•	
	-2								-2			
	2.15	Dit discontinued at 2.45m refusel	· _									
		Pit discontinued at 2.15m- refusal										
									-			
										:	:	
									-		•	
	- 3								-3			
											•	
												-
									ŀ	:	•	
										:		
	-4								4	:		
									[
									-			
	-											

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G Gas	sample PID	Photo ionisation detector (ppm)							
B Bulk sample	P Pisto		Point load axial test Is(50) (MPa)							
BLK Block sample	U, Tube	e sample (x mm dia.) PL(D	Point load diametral test Is(50) (MPa)							
C Core drilling	W Wate	er sample pp	Pocket penetrometer (kPa)							
D Disturbed sam	ple > Wate	er seep S	Standard penetration test							
E Environmenta	sample 📱 Wate	er level V	Shear vane (kPa)							

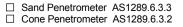
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703893 NORTHING: 8628871 **PIT No:** 120 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	& In Situ Testing	_	_			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	mic Pene (blows p	etromete per mm)	r lest
	- 0.1	Strata TOPSOIL: medium dense, grey-brown, silty sandy gravel, topsoil, fine to medium gravel, fine to coarse grained sand, roots & rootlets, humid SANDY GRAVEL: medium dense to dense, grey and red red-brown, sandy gravel with some clay, fine to medium gravel, fine to coarse grained sand, humid - weakly cemented from 0.6m depth		Ţ	De	Sa	Comments		-	10	15	20
	- 0.8	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· _ · _									
	-1 1.0 - - - - - - - - - - - - - - - - - - -	Pit discontinued at 1.0m- refusal							-1			
	- 3 - - - - -								-3			
	- 4 - - 								-4			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND									
A Auger sample	G Gas	sample PID	Photo ionisation detector (ppm)							
B Bulk sample	P Pisto		Point load axial test Is(50) (MPa)							
BLK Block sample	U, Tube	e sample (x mm dia.) PL(D	Point load diametral test Is(50) (MPa)							
C Core drilling	W Wate	er sample pp	Pocket penetrometer (kPa)							
D Disturbed sam	ple > Wate	er seep S	Standard penetration test							
E Environmenta	sample 📱 Wate	er level V	Shear vane (kPa)							

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703873 NORTHING: 8628841 **PIT No:** 121 **PROJECT No:** 78245.02 DATE: 7/9/2017 SHEET 1 OF 1

	_		Description	jc		San		& In Situ Testing		D	. D		
RL	Dej (n	otn ו)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	mic Pene (blows p	per mm)	Test
Н			Strata TOPSOIL: dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse	XX	-		Sa			5	10	15	20
	-	0.2	topsoil, fine to medium lateritic gravel, fine to coarse _ grained sand, roots & rootlets, humid									•	
	-	0.5	GRAVELLY SANDY SILT: very stiff, yellow-brown, sandy gravelly silt, fine to medium lateritic gravel, fine to coarse grained sand, lightly cemented, humid									•	
	-	0.0	CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, humid									• • • • •	
	-									-		• • • • •	
	- 1	1.0	KAOLONISED SILTSTONE: very low strength,	6_07						-1		•	
	-		KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							-		•	
	-												
	-									-		•	
	-	1.7	Pit discontinued at 1.7m- refusal	· · _						-			
	-									-		•	
	-2									-2		•	
	-									-		•	
	-									-		•	
	-									-		•	
	-									-		•	
	-											•	
	-3 -									-3		•	
	-									-		•	
	-									-		•	
	-											•	
	-									-			
	-									-4		•	
	-											•	
	-									-		•	
	-											•	
	-									-		•	
	-									-		•	
	-												

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPLI	ING	& IN SITU TESTING	LEGE	ND	1
A Auge	er sample (G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk	sample F	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block	sample l	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
C Core	drilling \	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Distu	rbed sample	⊳	Water seep	S	Standard penetration test	
E Envir	onmental sample	Ŧ	Water level	V	Shear vane (kPa)	

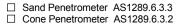
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703930 NORTHING: 8628823 PIT No: 122 **PROJECT No:** 78245.02 DATE: 7/9/2017 SHEET 1 OF 1

			Description	lic		San		& In Situ Testing	_		D i	ata a T
R	Dep (m	th)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water		Penetrom	
		_	Strata		ŕ	ă	Sar	Comments		5	10 15	20 :
	ŀ	0.1-	TOPSOIL: stiff, grey-brown, sandy silty topsoil, fine to medium grained sand, trace gravel, roots & rootlets, M <wp< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th></wp<>							-		
	-	0.3	SANDY SILT: stiff, grey-brown, sandy silt, fine to medium grained sand, trace gravel, sandy silt, M <wp< td=""><td></td><td>в</td><td>0.3</td><td></td><td></td><td></td><td>-</td><td></td><td></td></wp<>		в	0.3				-		
	-	0.6	GRAVELLY SANDY SILT: very stiff, (lightly cemented), yellow-brown mottled orange-brown, sandy gravelly silt, fine to medium lateritic gravel, fine to coarse grained sand, humid			0.6				-		
	- 1	1.1	CLAYEY SANDY GRAVEL: weakly to moderately cemented, red-brown, yellow-brown, clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid							-1		
	-	1.1	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· · ·						-		
	-									-		
	ļ	1.7	Pit discontinued at 1.7m- refusal									
	-											
	-2									-2		
	-									-		
	-											
	-											
	ļ									-		
	ŀ									-		
	-3									-3		
	F									-		
	ļ											
	-											
	-											
	-									-		
	ļ.											
	-4									-4		
	ļ											
	ŀ											:
	ŀ											:
	ŀ									l i		
	ŀ									Į		
	ŀ									ŀ		
	L									L :	: :	:

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAM	PLING	& IN SITU TESTING			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	

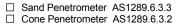
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703931 NORTHING: 8614940 PIT No: 123 **PROJECT No:** 78245.02 DATE: 7/9/2017 SHEET 1 OF 1

		Description	ic		Sam		& In Situ Testing	L				- ·
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynan	nic Pene (blows p	er mm)	riest
		Strata		ŕ	Ğ	Sar	Comments		5	10 :	15 :	20 :
	- 0.1	TOPSOIL: stiff, grey-brown, sandy silty topsoil, fine to medium grained sand, trace gravel, roots & rootlets, M <wp SANDY SILT: stiff, grey-brown, sandy silt, fine to</wp 										
	- 0.4	medium grained sand, trace gravel, sandy silt, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></wp<>							-			
	-	GRAVELLY SANDY SILT: very stiff, yellow-brown, sandy gravelly silt, fine to medium lateritic gravel, fine to coarse grained sand, humid									• • • • •	
	- 0.8 - - 1 -	CLAYEY SANDY GRAVEL: weakly cemented, yellow-brown, orange-brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid		в	0.8				-1			
	-				1.4							
	- 1.7		018									
	-	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	·									
	-2		· · ·						-2			
	- 2.2											
	- - - -	Pit discontinued at 2.2m- refusal							-			
	- 3 - -								-3			
	-								-			
	- 4 -								-4			
	-											
	-											
	-											

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPL	ING	& IN SITU TESTING			1
A A	uger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B B	lulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK B	llock sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D D	isturbed sample	⊳	Water seep	S	Standard penetration test	
ΕE	nvironmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703874 NORTHING: 8628673 **PIT No:** 124 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

			Description	ic.		Sam		& In Situ Testing	L _			- ,
i		epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(blo	Penetromete ows per mm)	
		0.3	TOPSOIL: medium dense, grey-brown, gravelly sandy silt, fine to medium gravel, fine to medium grained sand, M <wp SANDY GRAVEL: medium dense, brown, fine to medium lateritic gravel, fine to coarse grained sand, humid</wp 			⊖ • 0.3 • 0.6	Sar	Comments		5	10 15	20
	-	1.8		· · ·						-		
	-2		Pit discontinued at 1.8m- refusal							-2		
	-3									-3		
	- 4									-4		

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: Free groundwater observed at 1.5m depth

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
A Aug	ger sample	G	Gas sample		Photo ionisation detector (ppm)						
B Bul	k sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)						
BLK Blo	ck sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)						
C Cor	re drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D Dist	turbed sample	⊳	Water seep	S	Standard penetration test						
E Env	/ironmental sample	Ŧ	Water level	V	Shear vane (kPa)						

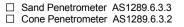
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703912 NORTHING: 8628681 PIT No: 125 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		San	npling	& In Situ Testing	_	_			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	mic Pene (blows p	etromete per mm)	r lest
		Strata	U	Ту	De	San	Comments		5	10	15	20
	- 0.2	TOPSOIL: medium dense, grey-brown, gravelly sandy silt, fine to medium gravel, fine to medium grained sand, M <wp< td=""><td>R</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>	R									
	- 0.2	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							-			
	-	moderately cemented, off-white, red-brown, siltstone							-			
	-											
			<u> </u>							÷		
	-								-	÷		
	-		· _ · .									
	-1 1.0	Pit discontinued at 1.0m- refusal	I						-1			
	-								-	÷		
	-								-			
	-											
	-								- :		•	
	-								-	÷		
	-2								-2		:	
	-											
										÷		
	-								- :		•	
	-											
	-								-	:	:	
										-		
	-								-			
	-3								-3			
	-								-			
	-								-			
										:		:
	-								-			
	-								-	÷	•	:
	-										•	
												:
	-4								-4			
	-								-	-		
	-									÷		
	-											
	[
	-											
	-								ŀ	÷		
	-											
	-											
-												· · · · · · · · · · · · · · · · · · ·

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMF	PLINC	3 & IN SITU TESTING			1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	ž	Water level	V	Shear vane (kPa)	

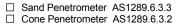
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 703976 NORTHING: 8628713 PIT No: 126 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	<u>i</u>		Sam	npling &	& In Situ Testing	_	_			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	etromete er mm)	r lest
		Strata		Τ	De	Sar	Comments		5	10 :	15 :	20
	- 0.1	TOPSOIL: dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse grained sand, roots & rootlets, humid									•	
	-	SILTY SAND: dense, yellow-brown, silty, fine to coarse grained sand, with some gravel, humid										
	-	grained sand, with some gravel, humid							-		•	
	0.55	CLAYEY SANDY GRAVEL: dense, yellow-brown, clayey									•	
	-	sandy gravel, humid	0.0 0.0									
	-										•	
	-1	- weakly cemented from 1.0m depth							-1		•	
	- 1.1	Pit discontinued at 1.1m- refusal	n V r									
	-										•	
	-										•	
	-									-	•	
	-											
	-										•	
	-2								-2			
	-								[•	
	-										•	
	-										•	
	-										•	
	-										•	
	-								-3		•	
	-3										•	
	-								-		•	
	-										•	
	-										•	
	-								-		•	
	-										•	
	-4								-4		•	
	-										•	
	-										•	
	-								-		•	
	-											
	-								-		• • • •	
											•	
											:	

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	PLINC	3 & IN SITU TESTING	EGEND	
A	Auger sample	G	Gas sample	PID Photo ioni	isation detector (ppm)
В	Bulk sample	Р	Piston sample		axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load	diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample		netrometer (kPa)
D	Disturbed sample	⊳	Water seep	S Standard	penetration test
E	Environmental sample	ž	Water level	V Shear var	ie (kPa)

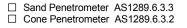
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704066 NORTHING: 8628690 **PIT No:** 127 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	Sampling & In Situ Testing						Durania Durante a Tart			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dynamic Penetrometer Test (blows per mm)			
	(,	Strata	Ū	Ty	Dep	Sam	Results & Comments		5	10	15	20
	- - - 0.35 -	FILLING: generally well compacted. red-brown and grey-brown, clayey sandy gravel filling, fine to medium gravel, fine to coarse grained sand, humid										
	-	SANDY CLAY: very stiff, red-brown, sandy clay, with some gravel, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></wp<>							-			
	- 0.8- - 1 - 1 	CLAYEY SANDY GRAVEL: very dense, red-brown, clayey sandy gravel, humid							- 1 - 1 			
	-	- weakly to moderately cemented from 1.5m depth	0.0							-	:	
	- 1.6- - - - 2	Pit discontinued at 1.6m- refusal	- F - Z - V						-2			
	-								-		· · · ·	
	-								-			
	- - 3 -								-3			
	-								-			
	- - - 4								- 4		· · · · ·	
	- - -								-			
	-								-			
	-										:	

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	IPLING	& IN SITU TESTING	LEG	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	ž	Water level	V	Shear vane (kPa)

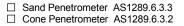
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704066 NORTHING: 8628731 PIT No: 128 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	pling 8	& In Situ Testing	_				
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	mic Pene (blows p	tromete er mm)	r lest
	-	Strata SANDY CLAY: very dense, red-brown, sandy clay, fine to coarse grained sand, M <wp< th=""><th></th><th><u> </u></th><th>Ď</th><th>Sa</th><th></th><th></th><th></th><th>10</th><th>15</th><th>20</th></wp<>		<u> </u>	Ď	Sa				10	15	20
	-								-			
	- 0.9- -1	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· _ · ·						-1		• • • •	
	- 1.1- - - - -	Pit discontinued at 1.1m- refusal							-			
	- - 2 -								-2			
	- - - -								-			
	- 3 - - - -								-3 - - -			
	- - - - 4 -								- - - 4			
	-								-			
	-								-			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	PLINC	3 & IN SITU TESTING			7
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

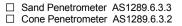
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704095 NORTHING: 8628732 **PIT No:** 129 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	ic		San		& In Situ Testing	L	_			
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	mic Pene (blows p	etromete er mm)	r lest
		Strata		Т	ă	Sar	Comments		5 :	10	15 :	20 :
	- 0.2	CLAYEY SANDY GRAVEL: medium dense, red-brown, fine to medium lateritic gravel, fine to coarse grained sand, humid							-		•	
	-	CLAYEY SANDY GRAVEL: medium dense, weakly cemented, red-brown, fine to medium lateritic gravel, fine to coarse grained sand, humid							-			
	- 0.6 -	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· _ · .						-		•	
	- 0.8											
	- 1 	Pit discontinued at 0.8m- refusal							-1			
	- - 3 - - - - -								-3			
	- 4 								-4			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	IPLING	& IN SITU TESTING	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S Standard penetration test
E Environmental sample	¥	Water level	V Shear vane (kPa)

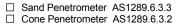
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704125 NORTHING: 8628731 **PIT No:** 130 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling 8	& In Situ Testing					
Ч	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	etromete per mm)	r Test
	. ,	Strata		ту	De	San	Comments	_	5	10	15	20
	-	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone						-				
	- - - 0.8	Pit discontinued at 0.8m- refusal										
	- 1 - - - -								-1			
	- - 2 - - - - -								-2			
	- 								-3			
	- - - - - -								- 4			
	-								-			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	PLING	3 & IN SITU TESTING	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S Standard penetration test
E Environmental sample	ž	Water level	V Shear vane (kPa)

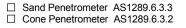
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704150 NORTHING: 8628731 PIT No: 131 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	jc		Sam		& In Situ Testing	L	_			
RL	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	amic Pene (blows p	etromete er mm)	r lest
			0 — · –		ă	Saı	Comments	<u> </u>	5	10 :	15	20
	-	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone			0.1				-			
	-		· · ·	в						:	•	:
	-										•	
	-				0.5					:	•	
	-										•	
	- 0.9		· _ · .									
	-1	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone	· _ · ·						-1			
		highly fractured, silicified siltstone							-		•	
	- 1.2 -	Pit discontinued at 1.2m- refusal							-		•	
	-									:	•	:
	-								-		•	
	-								-			
	-									:	•	:
	-2								-2			
	-								-	:		:
	-										•	
	-								- :	:	•	:
	-											
	-								-	:	•	:
	-								-			
	-3								-3		•	
	-								-		•	
	-										•	
	-										•	
	-										•	
	-								- :	:	•	:
	-											
	-4								4			
	-											
										:	:	
	-								-			:
	-											
												:
	-									:		
	-											

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMF	PLINC	3 & IN SITU TESTING			1
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S	Standard penetration test	
E Environmental sample	ž	Water level	V	Shear vane (kPa)	

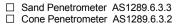
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704866 NORTHING: 8628690 PIT No: 132 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

	_		Description	ic		Sam		& In Situ Testing		Dynamic Penetrometer Test			
님	Dep (m	oth 1)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	er mm)	r Test
			Strata		ŕ	ă	Sar	Comments		5	10	15	20
	ŀ	0.1	TOPSOIL: medium dense, grey-brown, gravelly sandy slit, fine to medium gravel, fine to medium grained sand,							-		:	
	ļ		M <wp SANDY CLAY: stiff, red brown sandy clay, W<wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<></wp 										
	F									-			
	ŀ									-	:	:	
	[
	ŀ	0.8		·						-			
			CLAYEY SANDY GRAVEL: dense to very dense, red brown, fine to medium gravel, fine to coarse grained sand, humid	S. C.							-	:	
	-1		sano, numio	00 () 00 ()							:	:	
	ŀ		- weakly to modertaly cemented from 1.2m depth							-			
	- ·	1.35-		lør						-			
	[Pit discontinued at 1.35m- refusal								÷	:	:
	F									-			
	[:	:	
	-2									-2	÷	÷	
	[-	:	
	ŀ									-	:	:	
	ŀ									-			
	F									-		:	
	-3									-3	:	:	
	-									-			
	-									-			
												:	
	-									-			
	F									-			
	[:	
	-									-	÷	:	
	-4									-4			
	t												
	ŀ												
	ŀ									-		:	
	t										:	:	:
	[:	:	
	ŀ									l i	:	:	
	ŀ										:		
-								1		L .			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMF	LINC	3 & IN SITU TESTING	LEGI	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample		A) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	ž	Water level	V	Shear vane (kPa)

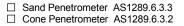
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704080 NORTHING: 8628651 PIT No: 133 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	ic		Sam	pling &	& In Situ Testing	L	_			
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynan	nic Pene (blows p	tromete er mm)	r lest
	- 0.1	Strata TOPSOIL: medium dense, grey-brown, gravelly sandy Silt, fine to medium gravel, fine to medium grained sand, M <wp< td=""><td></td><td>Т</td><td>Ď</td><td>Sa</td><td>Conmenta</td><td></td><td>5</td><td>10</td><td>15</td><td>20</td></wp<>		Т	Ď	Sa	Conmenta		5	10	15	20
		SANDY CLAY: very stiff, red brown slightly gravelly sandy clay, W <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>										
	-1 -1.1	CLAYEY SANDY GRAVEL: dense to very dense, red brown, fine to medium gravel, fine to coarse grained sand, humid - weakly to modertaly cemented from 1.0m depth							- 1		• • • • • • • • • • • • • • • • • • • •	
	- - -	Pit discontinued at 1.1m- refusal							-			
	-											
	-2								-2			
	-								-			
	- - 3 -								-3			
	-								-			
	- 4								-4			
	-								-			
	-								-			
L												

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

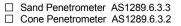
	SAMF	PLINC	3 & IN SITU TESTING			7
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT:Jacobs Group (Australia) Pty LtdPROJECT:Proposed Rapid Creek Flood MitigationLOCATION:Cnr Henry Wrigley Drive & McMillans Road,
Marrara

SURFACE LEVEL: --EASTING: 704150 NORTHING: 8628675 PIT No: 134 PROJECT No: 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

Berghn (m) Description of Strata Sampling & in Stu Testing of Strata Description (box per mount) participation data (box per mount) participation (box per mount	\square		Description	<u>.</u> .		Sam	npling &	& In Situ Testing		_			
TOPSOIL: medium dense, grey-brown, gravelly sandy sit, fine to medium gravel, fine	님	Depth (m)		iraph Log	be	pth	nple	Results &	Watei	Dynar	nic Pene (blows p	tromete er mm)	r Test
All ANDY SLIT: dense to very dense, grey brown, gravelly sansdy slit, fine to medium gravel, fine to coarse grained sand, humid All CLAYEY SANDY GRAVEL: weakly to moderately memeted, red and yellow brown, draves, fine to coarse grained sand, humid CLAYEY SANDY GRAVEL: weakly to moderately fine to medium gravel, fine to coarse grained sand, humid Plt discontinued at 0.9m- refusal				0	Ţ	De	San	Comments	_	5	10	15	20
		- 0.3 - 0.3 - 0.8 - 0.9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	TOPSOIL: medium dense, grey-brown, gravelly sandy silt, fine to medium gravel, fine to medium grained sand, M <wp GRAVELLY SANDY SILT: dense to very dense, grey brown, gravelly sansdy silt, fine to medium gravel, fine to coarse grained sand, humid SANDY GRAVEL: dense to very dense, dark brown, slightly clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid CLAYEY SANDY GRAVEL: weakly to moderately cemented, red and yellow brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid</wp 				S			- 1			20
										-			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	PLINC	3 & IN SITU TESTING			1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
DE	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704060 NORTHING: 8628642 PIT No: 135 **PROJECT No:** 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	& In Situ Testing					
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	(nic Penet (blows pe	er mm)	
	- 0.1+ - -	TOPSOIL: medium dense, grey-brown, gravelly sandy silt, fine to medium gravel, fine to medium grained sand, M <wp SANDY CLAY: very stiff, red and yellow brown slightly gravelly sandy clay, W<wp< td=""><td></td><td>L</td><td>Δ</td><td>Se</td><td></td><td></td><td></td><td>10</td><td>15</td><td>20</td></wp<></wp 		L	Δ	Se				10	15	20
	- 0.8 - 0.8 - 1 -	CLAYEY SANDY GRAVEL: very dense to weakly cemented, red and yellow brown, fine to medium gravel, fine to coarse grained sand, humid - weakly cemented from 1.2m depth							1			
	- 1.3 - 1.4 - -	KAOLONISED SILTSTONE: very low strength							-			
	-2 - -								-2			
	- - - - - 3 -								-3			
	-											
	- 4 4 								-4			
	-								- - - -			

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAME	PLINC	3 & IN SITU TESTING		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

CLIENT:Jacobs Group (Australia) Pty LtdPROJECT:Proposed Rapid Creek Flood MitigationLOCATION:Cnr Henry Wrigley Drive & McMillans Road,
Marrara

SURFACE LEVEL: --EASTING: 704101 NORTHING: 8628610 PIT No: 136 PROJECT No: 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	pling &	& In Situ Testing					
R	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results &	Water	Dynami (t	c Penet	romete er mm)	r Test
		Strata	Ū	ту	De	San	Results & Comments		5	10	15	20
	- 0.1	TOPSOIL: medium dense, grey-brown, gravelly sandy Silt, fine to medium gravel, fine to medium grained sand, M <wp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>•</td><td></td></wp<>							-		•	
	- 0.5	GRAVELLY SANDY SILT: dense to very dense, grey and yellow brown, gravelly sansdy silt, fine to medium gravel, fine to coarse grained sand, humid							-		•	
	-	SANDY GRAVEL: dense to very dense, red and yellow brown, slightly clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid							-			
	- 0.9		0.00								:	
	-1 1.0	CLAYEY SANDY GRAVEL: weakly to moderately cemented, red and yellow brown, clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid							-1	: : :		
	-	Pit discontinued at 1.0m- refusal									•	
	-								-		•	
	-											
	-2								-2			
	-											
	-											
	-								-		•	
	- 3								-3		•	
	-										•	
	-										•	
	-								-		•	
	-4								-4		•	
	-										•	
	-										•	
L											:	

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

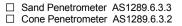
	SAMF	PLINC	3 & IN SITU TESTING			7
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT:Jacobs Group (Australia) Pty LtdPROJECT:Proposed Rapid Creek Flood MitigationLOCATION:Cnr Henry Wrigley Drive & McMillans Road,
Marrara

SURFACE LEVEL: --EASTING: 704114 NORTHING: 8628611 PIT No: 137 PROJECT No: 78245.02 DATE: 20/9/2017 SHEET 1 OF 1

		Description	ic		San		& In Situ Testing	_				
Я	Depth (m)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna	amic Pene (blows p	er mm)	r lest
	- 0.1 	Strata TOPSOIL: medium dense, grey-brown, gravelly sandy silt, fine to medium gravel, fine to medium grained sand, M <wp SANDY GRAVEL: dense to very dense, grey and yellow brown, slightly clayey sandy gravel, fine to medium gravel, fine to coarse grained sand, humid - weakly to moderately cemented, ned and yellow brown from 0.5m depth KAOLONISED SILTSTONE: extremely low strength, moderately cemented, off-white, red-brown, siltstone Pit discontinued at 0.9m- refusal</wp 		Type	Dep	Sam	Comments	5	1	10	15 	20
	4											

RIG: 5.5 tonne excavator with 450mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	PLINC	3 & IN SITU TESTING			7
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D	Point load diametral test Is(50) (MPa)	
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704248 NORTHING: 8628472 PIT No: 138 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

			Description	ic		Sam	npling &	& In Situ Testing	L			
R	Dept (m)		of	Graphic Log	Type	Depth	Sample	Results & Comments	Water		Penetromet ows per mm	
			Strata	U U	Ţ	De	San	Comments		5	10 15	20
	-	0.1 -	TOPSOIL: stiff, grey-brown, sandy silty topsoil, fine to medium grained sand, trace gravel, decicated, roots & rootlets, M <wp SILTY SANDY GRAVEL: dense, grey-brown, silty sandy gravel, fine to coarse grained sand, fine to medium gravel, humid CLAYEY SANDY GRAVEL: weakly to moderately cemented, red-brown, yellow-brown, fine to coarse grained sand, fine to medium gravel, humid</wp 							-		
	- - 1 - - -		fragmented porcellanite void infill at 1.2m							- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
	-	1.6	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone	· · _						-		
	- -	2.0-	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone							-2		
	- 1	2.4	Pit discontinued at 2.4m- refusal	-						-		
	- - - - - - - - -									-3		
	- - - - - - - - -									-4		
	-									-		

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPLI	ING	& IN SITU TESTING	LEGE	ND	1
A Auge	er sample (G	Gas sample	PID	Photo ionisation detector (ppm)	
B Bulk	sample F	Р	Piston sample		Point load axial test Is(50) (MPa)	
BLK Block	sample l	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)	
C Core	drilling \	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D Distu	rbed sample	⊳	Water seep	S	Standard penetration test	
E Envir	onmental sample	Ŧ	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704246 NORTHING: 8628418 **PIT No:** 139 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		_		Description	ici		San		& In Situ Testing	L_					
i	님	Dep (m		of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyr 5		s per m	ım)	est 20
$\left \right $	-		0.1	TOPSOIL: strong, grey-brown, sandy silty topsoil, fine to	XX			S				<u>10</u>	15		
	-		0.1	medium grained sand, roots & rootlets, M <wp< p=""> CLAYEY SANDY GRAVEL: moderately cemented, red-brown, yellow-brown, clayey sandy gravel, fine to medium sub-rounded lateritic gravel, fine to coarse grained sand, humid</wp<>							-				- - - - - - - - - - - - - - - - - - -
	-	1	1.5								- 1				· · · · · · · · · · · · · · · · · · ·
	-		1.5	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							-				
	-	2									-2				· · · · · · · · · · · · · · · · · · ·
		4	2.4	Pit discontinued at 2.4m- refusal											

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	IPLING	& IN SITU TESTING	LEG	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	ž	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704246 NORTHING: 8628418 **PIT No:** 140 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	.c		San		& In Situ Testing	L_			
RL	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dynamic (bl	Penetromete ows per mm) 10 15	
	- 0.1	TOPSOIL: medium dense, grey-brown, silty sandy		В	0.1	<u>s</u>			-1		20
	- 1.7 - 1.9 - 2 - 2.25	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone							-2		
	-4 - - - - - - -								-4		

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAM	IPLING	& IN SITU TESTING	LEG	END
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	ž	Water level	V	Shear vane (kPa)

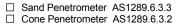
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704272 NORTHING: 8628381 **PIT No:** 141 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	.ci		Sam	npling &	& In Situ Testing				
R	Depth (m)	of	Graphic Log	Type	oth	Sample	Results &	Water	Dynamic I (blo	Penetromete ws per mm)	r Test
	(,	Strata	<u>0</u>	Typ	Depth	Sam	Results & Comments	>		10 15	20
	- 0.1 	TOPSOIL: stiff, grey-brown, sandy silty topsoil, fine to medium grained sand, trace gravel, roots & rootlets, M <wp CLAYEY SANDY GRAVEL: very dense,weakly cemented, red-brown, mottled yellow-brown, clayey sandy gravel, fine to coarse grained sand, fine to medium lateritic gravel, humid becoming moderately cemented at 0.5m</wp 							- - - - - - - 1		
	- - 1.6 -	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							· · · · · · · · · · · · · · · · · · ·		
	-2 - - - -								-2		
	- 2.7	Pit discontinued at 2.7m- refusal							:		
	- 3 - 3 - - - -								- 3 		
	4 								-4		
	_	nne excavator with 600mm wide rock tooth bucket					Arbon				

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMPLING & I	N SITU TESTING LEGE	
A Auger sample	G Gas	sample PID	Photo ionisation detector (ppm)
B Bulk sample	P Pisto		Point load axial test Is(50) (MPa)
BLK Block sample	U, Tube	e sample (x mm dia.) PL(D	Point load diametral test Is(50) (MPa)
C Core drilling	W Wate	er sample pp	Pocket penetrometer (kPa)
D Disturbed sam	ple > Wate	er seep S	Standard penetration test
E Environmenta	sample 📱 Wate	er level V	Shear vane (kPa)

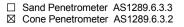
CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704333 NORTHING: 8628321 **PIT No:** 142 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

RL	Depth (m)	Description					& In Situ Testing	1.	1
		of	Graphic Log	e	ţ	ble	Results &	Water	Dynamic Penetrometer Test (blows per 150mm)
	()	Strata	ଅ ଅ	Type	Depth	Sample	Results & Comments	>	5 10 15 20
	0.1 0.3	TOPSOIL: stiff, grey-brown, sandy silty topsoil, fine to medium grained sand, trace gravel, decicated, roots & rootlets, M <wp SANDY SILT: medium dense, grey-brown, sandy silt, fine to medium grained sand, trace rootlets and roots, humid</wp 			0.3				
		SANDY CLAY: stiff, red-brown, sandy clay with some gravel, fine to coarse grained sand, fine to medium gravel, M <wp< td=""><td></td><td>В</td><td></td><td></td><td></td><td></td><td></td></wp<>		В					
	-1 1.0	CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, fine to medium gravel, fine to coarse grained sand, humid			1.0				-1
	- - - -2	moderately compacted at 1.6m							-2
	- 2.2	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							
	- 2.8 - 3	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone	· · · _						-3
	- 3.1 4 4 4 4 4 	Pit discontinued at 3.1m- refusal							-4

RIG: 15 tonne excavator with 600mm wide rock tooth bucket


LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	LINC	3 & IN SITU TESTING			1
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
E	Environmental sample	ž	Water level	V	Shear vane (kPa)	

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704372 NORTHING: 8628257 **PIT No:** 143 **PROJECT No:** 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

			Description	<u>ici</u>		San		& In Situ Testing	L					
R	i De (I	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyna 5	(blow	enetrom vs per m	חm)	20
	-	0.3	TOPSOIL: grey-brown, sandy silty topsoil, fine to medium grained sand, M <wp< td=""><td></td><td></td><td>0.3</td><td>0</td><td></td><td></td><td>-</td><td></td><td></td><td><u> </u></td><td></td></wp<>			0.3	0			-			<u> </u>	
	- - - - - 1 -	1.2			В	• 1.2				- - - - - 1				
	-	1.5	CLAYEY SANDY GRAVEL: weakly to moderately cemented, red-brown, yellow-brown, clayey sandy gravel, humid							-				
	-		KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							-				
	-2			· · · · ·						-2				
	-									-				
	-	2.7	Pit discontinued at 2.7m- refusal							-				
	-3									-3				
	-									-				
	-									-				
	-4									-4				
										-				
										-				
	-									-				

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

	SAMF	PLINC	3 & IN SITU TESTING		
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B	Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	ž	Water level	V	Shear vane (kPa)

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704418 NORTHING: 8628221 **PIT No:** 144 PROJECT No: 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

		Description	<u>.</u>		Sam	npling &	& In Situ Testing				
RL	Depth (m)	of	Graphic Log	эс	oth	Sample	Results &	Water		Penetrometer ws per mm)	Test
	()	Strata	Ū_	Type	Depth	Sam	Results & Comments			0 15	20
		TOPSOIL: medium dense, grey-brown, silty sandy gravel, topsoil, fine to medium lateritic gravel, fine to coarse grained sand, humid									
	0.25	CLAYEY SANDY GRAVEL: weakly to moderately cemented, red-brown, yellow-brown, clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand, humid						-			
	-1 · 1.1		1200 1000						1		
		KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone						-			
	-2 							-	2		
	2.5 2.6	PORCELLANITE (DARWIN MEMBER): medium to high strength, moderately weathered, off-white, yellow-brown, highly fractured, silicified siltstone									
		Pit discontinued at 2.6m- refusal						-			
	- 3								3		
	- 4 - 4							-	4		
	-						Arbon				

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAME	PLINC	3 & IN SITU TESTING		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D Disturbed sample	⊳	Water seep	S	Standard penetration test
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

TEST PIT LOG

CLIENT: PROJECT:

Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation LOCATION: Cnr Henry Wrigley Drive & McMillans Road, Marrara

SURFACE LEVEL: --**EASTING:** 704484 NORTHING: 8628219 **PIT No:** 145 PROJECT No: 78245.02 DATE: 8/9/2017 SHEET 1 OF 1

				Description	ici		Sam		& In Situ Testing	<u>ب</u>					F 1
Ē)epth (m)	1	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Dyr 5	(blo	Penetror ws per r 0 1	nm)	20
	-	0.	.2	TOPSOIL: medium dense, grey-brown, sandy silty gravel, topsoil, fine to medium gravel, fine to medium grained sand, rootlets & roots, decicated SANDY SILT: stiff, grey-brown, sandy silt, fine to				S			-	<u>, , , , , , , , , , , , , , , , , , , </u>			
	- - - - - - 1 -		.4	medium grained sand, trace gravel, decicated CLAYEY SANDY GRAVEL: weakly cemented, red-brown, yellow-brown, clayey sandy gravel, fine to medium lateritic gravel, fine to coarse grained sand							- - - - - - 1 -				
	-	1.	- 1	KAOLONISED SILTSTONE: very low strength, moderately cemented, off-white, red-brown, siltstone							-				
	-2	2.	.0	 strength, moderately weathered, off-white, yellow-brown, / highly fractured, silicified siltstone Pit discontinued at 2.0m- refusal 	L						-				
	- 3										-3 - - - - -				
	- 4										-4				

RIG: 15 tonne excavator with 600mm wide rock tooth bucket

LOGGED: R. Arbon

SURVEY DATUM: MGA94

WATER OBSERVATIONS: No free groundwater encountered

REMARKS:

SAMPLING & IN SITU TESTING LEGEND								
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)				
B Bulk sample	Р	Piston sample) Point load axial test Is(50) (MPa)				
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)				
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)				
D Disturbed sample	⊳	Water seep	S	Standard penetration test				
E Environmental sample	ž	Water level	V	Shear vane (kPa)				

□ Sand Penetrometer AS1289.6.3.3 Cone Penetrometer AS1289.6.3.2

Client: Project: Location:		Jacobs Group (Proposed Rapic Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH
Weather du	: be: f ground su iring test:		avel Filling		Test No. Easting: Northing Surface Level:	101 704124 m 8628928 m - m AHD
Hole diame Depth of ho	Bore (open ter ble at time o ater at initial	ftest	300 mm 630 mm 0 mm		ater table 4000	mm
Test Resul	ts					
Time (min) 0 13.0 22 31 40 45 53 58 65 65 65 65 70tals	Volume added (ml) 0	Ra (mm) (r 0 - 60 7.6 90 5.5 118 5.7 140 4.0 148 2.6 160 2.5 170 3.3 175 1.7	iltration ite [F/t] n/sec) 39E-05 56E-05 19E-05 50E-05 33E-05 19E-05 19E-05 49E-05	9.0E-05 8.0E-05 7.0E-05 6.0E-05 5.0E-05 3.0E-05 2.0E-05 1.0E-05 0.0E+00 0.0 10.0	20.0 30.0 40.0 Time (minutes)	50.0 60.0 70.0
Calculation r/2 = H1 = t2-t1 = H2 =	ns : 7.5 (400 (65) 383 (cm min 39	75 m 4 m 00 sec 83 m			
-	Conducti	vity - Over tota				
k	= =	5.06E-03 8.44E-07	cm/min m/sec	where k = r/2[In(r/2+ (Kessler & Oosterba	-H1)-In(r/2+H2)]/(t2-t1) an 1974)	
	=	0.07	m/day			

Client: Project: Location:	I	Jacobs Group (Proposed Rapi Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH
Test Locatic Description: Material type Condition of Weather dur	: ground su	Test Pit 108, 1.0 Red brown Sand rface before tes Fine	ly Clay		Test No. Easting: Northing Surface Level:	108 704070 m 8628843 m - m AHD
Details of B Hole diamete Depth of hole Depth to wat	er e at time o	ftest	300 mm 500 mm 0 mm		ater table 4000	mm
Test Results	S					
Time (min) 0 10.0 23 32 40 48 58 58 58 58 58 58 58 58 70tals	Volume added (ml) 0 0	Ri (mm) (normalized for the second	filtration ate [F/t] m/sec) 33E-05 13E-05 56E-05 21E-05 17E-05 17E-05 17E-05 46E-05	9.0E-05 8.0E-05 7.0E-05 6.0E-05 5.0E-05 3.0E-05 2.0E-05 1.0E-05 0.0E+00 0.0 10.0	20.0 30.0 40.0 Time (minutes)	50.0 60.0 70.0
Calculations r/2 = H1 = t2-t1 = H2 =	7.5 c 400 c 58 r 381 c	cm min 34	075 m 4 m 180 sec .81 m	tost		
k	=	6.17E-03	cm/min		H1)-ln(r/2+H2)]/(t2-t1)	
	= =	1.03E-06 0.09	m/sec m/day	(Kessler & Oosterba		

Client: Project: Location:		Jacobs Group (/ Proposed Rapic Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH
Test Location Description: Material type Condition of Weather dur Details of B	e: ground su ing test:		elly Clay		Test No. Easting: Northing Surface Level:	109 704120 m 8628802 m - m AHD
Hole diameter Depth of hol Depth to wat	er e at time o	ftest	300 mm 450 mm 0 mm	Depth to wa	ter table 4000	mm
Fest Result	s					
Time (min) 0 5.0 10 15 24 39 49 57 66 66 66 Totals	Volume added (ml) 0	Ra (mm) (n 0 0 28 9.3 65 1.2 87 7.3 127 7.4 172 5.0 232 4.1 257 4.6	Itration te [F/t] n/sec) 33E-05 33E-04 33E-05 33E-05 37E-05 37E-05 33E-05 33E-05	1.4E-04 1.2E-04 1.0E-04 1.0E-04 8.0E-05 0.0E+00 0.0 10.0	20.0 30.0 40.0 Time (minutes)	50.0 60.0 70.0
Calculation: r/2 = H1 = t2-t1 = H2 =	7.5 400 66 374	cm min 39 cm 3.	75 m 4 m 60 sec 74 m			
Hydraulic (k	Conducti =	vity - Over tota 7.40E-03	I duration of		H1)-ln(r/2+H2)]/(t2-t1)	
ĸ	= = =	7.40E-03 1.23E-06 0.11	m/sec m/day	(Kessler & Oosterba		

Client: Project: Location:		Jacobs Group (Proposed Rapi Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH
Weather du	e: ground su ring test:		Clayey Sand		Test No. Easting: Northing Surface Level:	114 704028 m 8628768 m - m AHD
Details of E Hole diamet Depth of hol Depth to wa	er le at time o	of test	300 mm 650 mm 0 mm	1	ater table 4000	mm
Fest Result	S					
Time (min) 0 12.0 25 33 43 50 56 63 63 63 63 63 Totals	Volume added (ml) 0	Ra (mm) (I 0 - 55 7. 95 5. 123 5. 147 4. 165 4. 183 5. 195 2.	iltration ate [F/t] m/sec) 64E-05 13E-05 83E-05 00E-05 29E-05 00E-05 86E-05 86E-05	9.0E-05 8.0E-05 7.0E-05 6.0E-05 5.0E-05 4.0E-05 3.0E-05 1.0E-05 0.0E+00 0.0 10.0	20.0 30.0 40.0 Time (minutes)	50.0 60.0 70.0
Calculation r/2 = H1 = t2-t1 = H2 =	7.5 400 63 381	cm min 37	075 m 4 m 780 sec 81 m al duration o	f test		
k	=	5.84E-03	cm/min	where $k = r/2[ln(r/2+$	H1)-ln(r/2+H2)]/(t2-t1)	
	= =	9.73E-07 0.08	m/sec m/day	(Kessler & Oosterba	n 1974)	

Client: Project: Location:		Jacobs Group (/ Proposed Rapid Marrara, NT			Project No: Date: Tested by:	78245.02 21-Sep-17 VH	
Weather du	e: f ground su ring test:				Test No. Easting: Northing Surface Level:	115 703929 m 8628930 m - m AHD	
Hole diame Depth of ho Depth to wa	ter le at time c		300 mm 520 mm 0 mm	Depth to wat	er table 4000) mm	
Test Resul	ts						
Time (min) 0 5.0 10 15 20 25 30 35 40 45 50 55 60 60 Totals	Volume added (ml) 0 	Ra (mm) (m 0	tration te [F/t] v/sec) 7E-04 3E-04 3E-04 3E-05 7E-05 3E-05 3E-05 3E-05 7E-05 7E-05 7E-05 7E-05 7E-05	3.5E-04 3.0E-04 2.5E-04 2.0E-04 1.5E-04 1.0E-04 5.0E-05 0.0E+00 0.0 10.0	20.0 30.0 40.0 Time (minutes)	50.0 60.0 70.0	
Calculation r/2 = H1 = t2-t1 = H2 =	7.5 400	cm min 360	75 m 4 m 00 sec 74 m				
Hydraulic k		vity - Over tota 8.41E-03	duration of t		14) 10(r/2+112)1//42 44)		
к	=	8.41E-03 1.40E-06	m/sec	where k = r/2[ln(r/2+H (Kessler & Oosterban			

Client: Project: Location:	F	Jacobs Group (Proposed Rapic Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH
Test Locatic Description: Material type Condition of Weather duri	: ground su	Fest Pit 117, 0.5 Yellow brown silt rface before test Fine a	y sandy gravel		Test No. Easting: Northing Surface Level:	117 703787 m 8628939 m - m AHD
Details of Bo Hole diamete Depth of hole Depth to wate	er e at time of	ftest	300 mm 500 mm 0 mm	Depth to wate	r table 4000	mm
Fest Results	5					
Time (min) 0 5.0 11 17 30 44 54 62 70 10 70 Totals	Volume added (ml) 0 0 0	Ra (mm) (r 0	iltration ite [F/t] n/sec) 33E-05 78E-05 78E-05 33E-06 38E-05 38E-05	4.5E-05 4.0E-05 3.5E-05 2.5E-05 2.0E-05 1.5E-05 1.0E-05 5.0E-06 0.0E+00 0.0 20	.0 40.0 Time (minutes)	60.0 80.0
Calculations r/2 = H1 = t2-t1 = H2 =	5: 7.5 c 400 c 70 r 390 c	cm nin 42	75 m 4 m 00 sec 90 m			
-		vity - Over tota) p/s/2 2)]///2 4)	
k	=	2.66E-03 4.44E-07	cm/min m/sec	where k = r/2[ln(r/2+H1 (Kessler & Oosterban ⁻		

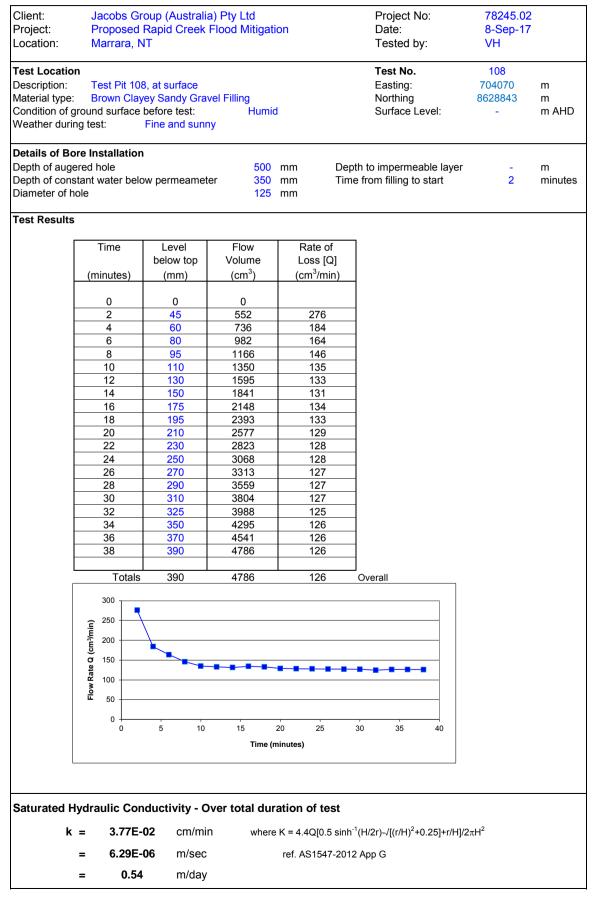
Client: Project: Location:		Jacobs Group (Proposed Rapio Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH		
Test Locat Description Material typ Condition o Weather du	ion : e: f ground su rring test:	Test Pit 121, 0.5 Red brown and y urface before test Fine	ellow brown o	clayey sandy gravel	Test No. Easting: Northing Surface Level:	121 703873 m 8628841 m - m AHD		
Details of I Hole diame Depth of ho Depth to wa	ter le at time c		300 mm 500 mm 0 mm	י. ו	r table 4000	mm		
Test Resul	ts							
Time (min) 0 17.0 23 28 34 43 47 54 60 66 74 74 74 74 Totals	Volume added (ml) 0	Ra (mm) (r 0 - 25 2. 40 4. 50 3. 65 4. 95 5. 100 2. 110 2. 115 1. 120 1. 130 2.	iltration ate [F/t] n/sec) 45E-05 17E-05 33E-05 17E-05 56E-05 56E-05 38E-05 39E-05 39E-05 08E-05 08E-05	6.0E-05 5.0E-05 4.0E-05 3.0E-05 2.0E-05 1.0E-05 0.0E+00 0.0 20	.0 40.0 Time (minutes)	60.0 80.0		
Calculation r/2 = H1 = t2-t1 = H2 =	7.5 400	cm min 44	75 m 4 m 40 sec 87 m					
Hydraulic	Conduct	ivity - Over tota	I duration o	f test				
k	=	3.29E-03	cm/min	where $k = r/2[ln(r/2+H1)]$)-ln(r/2+H2)]/(t2-t1)			
	= =	5.48E-07 0.05	m/sec m/day	(Kessler & Oosterban 1	974)			

Client: Project: Location:		Jacobs Group (/ Proposed Rapid Marrara, NT			Project No: Date: Tested by:	78245.02 8-Sep-17 VH
Weather du	: be: f ground su iring test:	Test Pit 130, 0.4 Siltstone Bedrock urface before test: Fine a			Test No. Easting: Northing Surface Level:	130 704125 m 8628731 m - m AHD
Hole diame Depth of ho Depth to wa	ter ole at time o	of test	300 mm 400 mm 0 mm	·	ter table 4000	mm
Fest Resul	ts					
Time (min) 0 5.0 10 15 20 25 30 35 40 45 50 55 60 55 60 60 Totals	Volume added (ml) 0	Ra (mm) (m 0 0 50 1.6 80 1.0 95 5.0 110 5.0 118 2.6 128 3.3 135 2.3 140 1.6 145 1.6 145 1.6 145 1.6 156 1.3	Itration te [F/t] n/sec) 7E-04 0E-04 0E-05 0E-05 3E-05 3E-05 3E-05 7E-05 0E+00 3E-05 3E-05 3E-05 3E-05 3E-05	1.8E-04 1.6E-04 1.4E-04 1.2E-04 1.2E-04 1.0E-04 8.0E-05 2.0E-05 0.0E+00 0.0 10.0	20.0 30.0 40.0 Time (minutes)	50.0 60.0 70.0
Calculatior r/2 = H1 = t2-t1 = H2 =	7.5 400 60 384	cm min 360	75 m 4 m 00 sec 34 m	tost		
k	=	4.88E-03	cm/min	where k = r/2[ln(r/2+H	11)-ln(r/2+H2)]/(t2-t1)	
	= =	8.13E-07 0.07	m/sec m/day	(Kessler & Oosterbar	1974)	

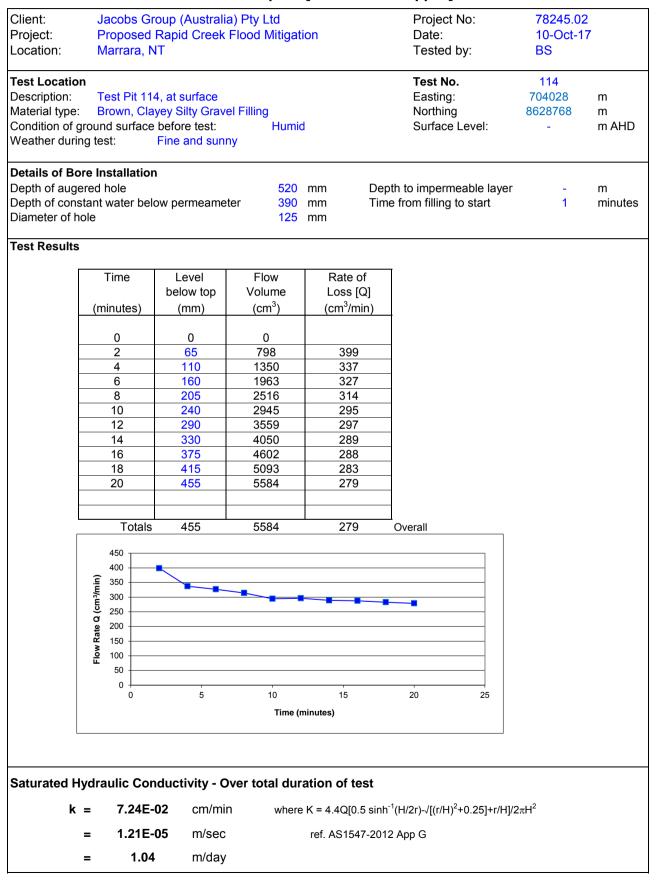
Client: Project: Location:		Jacobs Group (/ Proposed Rapid Marrara, NT			Project No: Date: Tested by:	78245.02 21-Sep-17 VH
Test Locatic Description: Material type Condition of Weather duri Details of Bo	: ground su ing test:				Test No. Easting: Northing Surface Level:	137 704114 m 8628611 m - m AHD
Hole diamete Depth of hole Depth to wat	e at time o		300 mm 450 mm 0 mm	Depth to water	table 4000) mm
Test Results	6					
Time (min) 0 5.0 10 15 20 25 30 35 40 45 50 55 55 Totals	Volume added (ml) 0 	Ra (mm) (m 0	tration te [F/t] //sec) 0E-04 3E-05 0E+00 0E+00 7E-05 0E+00 0E+00 7E-05 0E+00 0E+00 0E+00 7E-05	1.2E-04 1.0E-04 8.0E-05 6.0E-05 4.0E-05 2.0E-05 0.0E+00 0.0 10.0	20.0 30.0 44 Time (minutes)	
Calculations r/2 = H1 = t2-t1 = H2 =	7.5 (400 (55) 395 (cm min 33(cm 3.9	75 m 4 m 00 sec 95 m			
Hydraulic (k	Conducti =	vity - Over tota 1.85E-03	l duration of t		-In(r/2+H2)]//+2 +1)	
ĸ	=	3.09E-07	m/sec	where k = r/2[ln(r/2+H1) (Kessler & Oosterban 19		

Client: Project: Location:			p (Australia) Pl pid Creek Floc		Project No: Date: Tested by:	78245.02 21-Sep-17 VH		
Location.		Ivialiaia, INI			Tested by.	VII		
Test Locat Description Material typ Condition o Weather du	i: be: of ground si	Red and yellor urface before to	0.8 m below surf w brown Clayey est: Hu ne and sunny		Test No. Easting: Northing Surface Level:	138 704248 m 8628472 m - m AHI		
		n uncased)						
	eter ole at time o ater at initia		300 mr 400 mr 0 mr	n	ater table 4000	mm		
Test Resul	lts							
Time	Volume added		Infiltration Rate [F/t]	3.0E-04				
(min)	(ml)	(mm)	(m/sec)	2.5E-04				
0	0	0						
7.0 12		110 155	2.62E-04 1.50E-04	2.0E-04				
17		190	1.17E-04	2.0E-04				
				-				
				5.0E-05				
				0.0E+00 + 0.0	5.0 10.0 Time (minutes)	15.0 20.0		
17 Totals	0	190	1.86E-04					
Calculation r/2 = H1 = t2-t1 = H2 =	7.5 400	cm min	0.075 m 4 m 1020 sec 3.81 m					
Hydraulic	Conduct	ivity - Over to	otal duration o	of test				
k	=	2.11E-02	cm/min	where k = r/2[ln(r/2-	+H1)-ln(r/2+H2)]/(t2-t1)			
	=	3.51E-06	m/sec	(Kessler & Oosterb				
	=	0.30	m/day		· · · · · ,			
	-	0.00	maay					

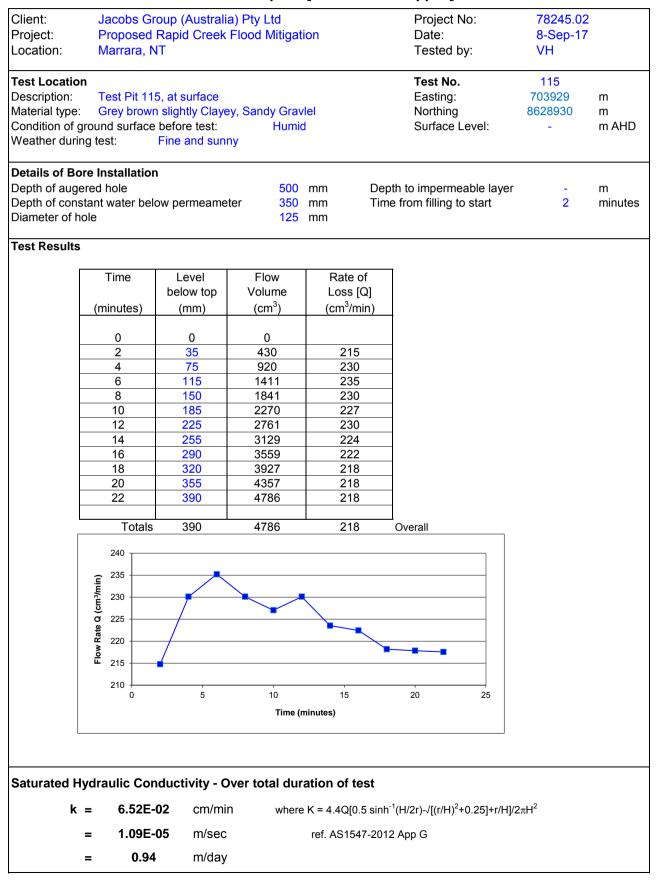
Client: Project: Location:		Jacobs Group Proposed Rapi Marrara, NT			Project No: Date: Tested by:	78245.02 21-Sep-17 VH
Test Locati Description: Material typ Condition of Weather du Details of E	e: f ground su ring test:		brown Clayey		Test No. Easting: Northing Surface Level:	138 704248 m 8628472 m - m AHD
Hole diame Depth of ho Depth to wa	ter le at time o	ftest	300 mn 580 mn 0 mn	n	ater table 4000	mm
Fest Resul	ts					
Time (min) 0 5.0 14 21 26 	Volume added (ml) 0	R (mm) (0 235 7. 390 2. 460 1. 490 1. 	filtration ate [F/t] m/sec) 83E-04 87E-04 67E-04 00E-04 00E-04 14E-04	9.0E-04 8.0E-04 7.0E-04 6.0E-04 5.0E-04 3.0E-04 2.0E-04 1.0E-04 0.0E+00 0.0 5.0	10.0 15.0 20 Time (minutes)	0.0 25.0 30.0
Calculation r/2 = H1 = t2-t1 = H2 =	ns : 7.5 (400 (26) 351 (cm min 1	075 m 4 m 560 sec .51 m			
-		vity - Over tota				
k	=	3.70E-02 6.16E-06	cm/min m/sec	where k = r/2[ln(r/2+ (Kessler & Oosterba	H1)-In(r/2+H2)]/(t2-t1) n 1974)	
	=	0.53	m/day			



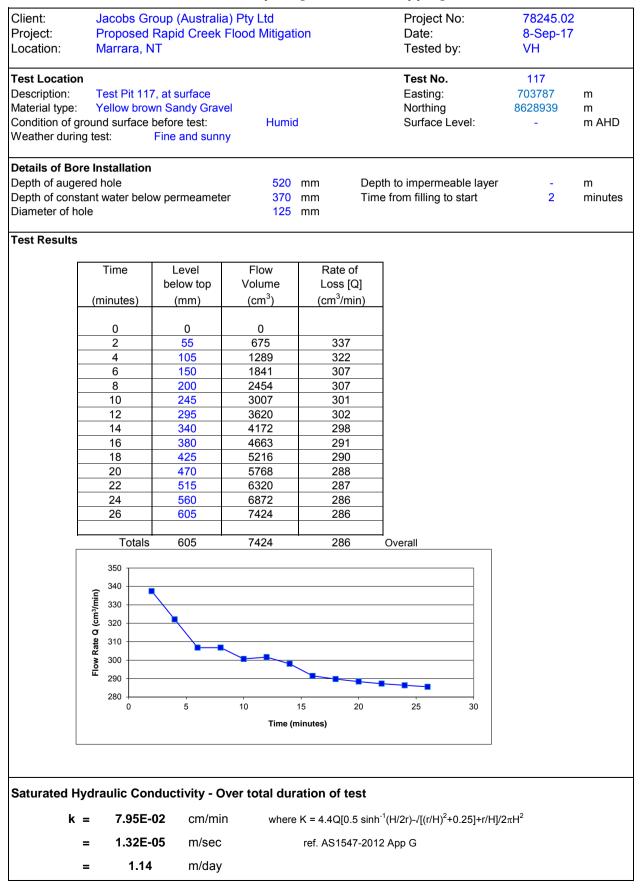
Client: Project: Location:		Jacobs Group Proposed Rap Marrara, NT			Project No: Date: Tested by:	78245.02 21-Sep-17 VH	
Test Location Description: Material type Condition of Weather dur	e: ground su	Test Pit 142, 0.6 Red and yellow Irface before tes Fine	brown Clayey	Sandy Gravel	Test No. Easting: Northing Surface Level:	142 704333 m 8628321 m - m AHD	
Details of B Hole diamete Depth of hole Depth to wat	er e at time c	of test	300 mm 650 mm 0 mm	1	er table 4000	mm	
Test Results	5						
Time (min) 0 5.0 15 21 26 35 50 50 50 50 50 Totals	Volume added (ml) 0	R (mm) (0 170 5 350 3 420 1 460 1 525 1 600 8 	filtration ate [F/t] m/sec) .67E-04 .00E-04 .94E-04 .33E-04 .33E-04 .33E-05 .00E-04	6.0E-04 5.0E-04 4.0E-04 3.0E-04 2.0E-04 1.0E-04 0.0E+00 0.0 10.0	20.0 30.0 44 Time (minutes)	0.0 50.0 60.0	
Calculations r/2 = H1 = t2-t1 = H2 =	7.5 400	cm min 3	075 m 4 m 000 sec 8.40 m				
-		ivity - Over tot					
k	= =	2.39E-02 3.98E-06	cm/min m/sec	where k = r/2[ln(r/2+H (Kessler & Oosterban			



Client: Project: Location:		Jacobs Group Proposed Rapi Marrara, NT			Project No: Date: Tested by:	78245.02 21-Sep-17 VH	
Weather du	e: f ground su ring test:		brown Clayey S	Sandy Gravel	Test No. Easting: Northing Surface Level:	145 704484 m 8628219 m - m AHD	
Details of E Hole diamet Depth of ho Depth to wa	ter le at time c		300 mm 550 mm 0 mm		er table 4000) mm	
Test Result	ts						
Time (min) 0 10.0 17 22 28 33 38 44 54 54 54 54 54 70tals	Volume added (ml) 0 	R (mm) (0	filtration ate [F/t] m/sec) 08E-04 31E-04 00E-04 56E-05 33E-05 33E-05 17E-05 17E-05 17E-05 54E-04	6.0E-04 5.0E-04 4.0E-04 3.0E-04 2.0E-04 1.0E-04 0.0E+00 0.0 10.0	20.0 30.0 44 Time (minutes)	0.0 50.0 60.0	
Calculation r/2 = H1 = t2-t1 = H2 =	7.5 400	cm min 32	075 m 4 m 240 sec 50 m				
Hydraulic	Conducti	vity - Over tota	al duration of	test			
k	= =	1.82E-02 3.03E-06 0.26	cm/min m/sec m/day	where k = r/2[ln(r/2+H (Kessler & Oosterban			





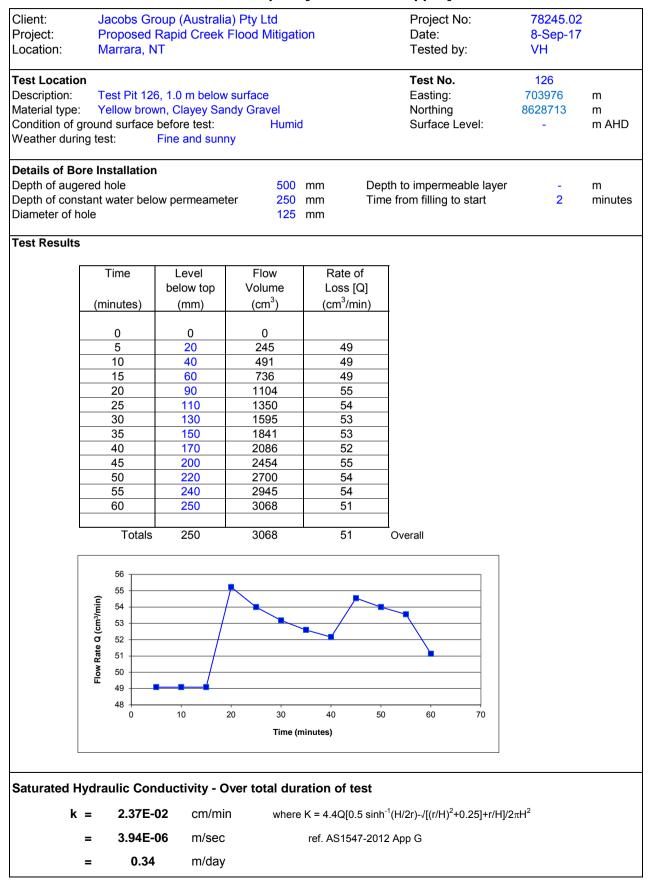


Client: Project: Location:		roup (Australia Rapid Creek NT		ion	Project No: Date: Tested by:	78245.02 8-Sep-17 VH	
Test Location Description: Material type Condition of Weather duri	Test Pit 11 e: Yellow brov ground surface	7, at surface wn Sandy Grave before test: Fine and sunn	Humic	1	Test No. Easting: Northing Surface Level:	117A 703787 8628939 -	m m m AHD
Depth of aug	stant water belo		520 er 370 125		oth to impermeable layer le from filling to start	- 2	m minutes
Test Results	S						
	Time	Level below top	Flow Volume	Rate of Loss [Q]]		
	(minutes)	(mm)	(cm ³)	(cm ³ /min)	4		
	0	0	0				
	2	80	982	491			
	4 6	150 220	1841 2700	460 450	_		
	8	220	3497	430	_		
	10	350	4295	430	-		
	12	415	5093	424	-		
	14	470	5768	412			
	16	525	6443	403			
	Totals	525	6443	403	Overall		
	000 005 (cm ³ /min) 005 00 005 00 000 00 000 00 000						
		2 4	6 8 Time (r	10 12 ninutes)	14 16 18		
	Hydraulic Cor (= 1.12E-	•01 cm/mir		k = 4.4Q[0.5 sinh	⁻¹ (H/2r)-/[(r/H) ² +0.25]+r/H]/:	2πH ²	
	= 1.87E- = 1.61			ref. AS1547-201	2 Арр G		

Client: Project: Location:	Proposed	roup (Australia Rapid Creek NT		on	Project No: Date: Tested by:	78245.02 8-Sep-17 VH	
	n: Test Pit 12	1, at surface wn Gravelly Sa before test: Fine and sunr	1	Test No. Easting: Northing Surface Level:	121 703873 8628841 -	m m m AHD	
Depth of a Depth of o Diameter					th to impermeable layer e from filling to start	-2	m minutes
Test Resu		I			1		
	Time	Level below top	Flow Volume	Rate of Loss [Q]			
	(minutes)	(mm)	(cm ³)	(cm ³ /min)	-		
	0	0	0				
	2	30	368	184			
	4	65 65	798 798	199 133			
	8	75	920	115			
	10	90	1104	110			
	12 14	105 125	1289 1534	107 110			
	14	145	1779	111			
	18	160	1963	109			
	20	175	2148	107			
	22 24	190 205	2332 2516	106 105			
	24	205	2761	105			
	28	220	2700	96			
	30	255	3129	104			
	32 34	275 290	3375 3559	105 105			
	36	305	3743	103			
	38	325	3988	105			
	40	340	4172	104			
	42	355	4357	104			
	Totals	355	4357	104	Overall		
	250 200 150 0 0 0 0 0 0 0 0						
Saturate	0 d Hydraulic Coi	5 10		25 30 ninutes) ation of test	35 40 45		
	k = 2.35E·	-			¹ (H/2r)-/[(r/H) ² +0.25]+r/H]/:	2πH ²	
	= 3.92E·						
	- 3.52L	11/300		ref. AS1547-2012	z App G		

Client: Project: Location:		roup (Australia Rapid Creek NT		ion	Project No: Date: Tested by:	78245.02 10-Oct-1 BS	
Test Location Description: Material type Condition of Weather duri	Test Pit 12 Brown, Sar ground surface		Humic	d	Test No. Easting: Northing Surface Level:	124 703874 8628673 -	m m m AHD
Depth of aug	stant water bel		500 er 300 95		epth to impermeable layer me from filling to start	- 0.5	m minutes
Test Results	\$						
	Time (minutes)	Level below top (mm)	Flow Volume (cm ³)	Rate of Loss [Q] (cm ³ /min)			
	0 1.0 2.0 3.0	0 160 300 440	0 1134 2126 3119	1134 1063 1040			
	Totals	440	3119	1040	Overall		
	1140 1140 1120 1120 1120 100 1000 1						
		0.5	1.0 1.5 Time (r	2.0 minutes)	2.5 3.0 3.5		
	Hydraulic Co	-				2	
k	x = 4.59E = 7.65E = 6.61	- 05 m/sec		≥ K = 4.4Q[0.5 sir ref. AS1547-20	nh ⁻¹ (H/2r)-√[(r/H) ² +0.25]+r/H]/2)12 App G	2πH ⁻	

Client: Project: Location:		roup (Australia Rapid Creek NT		ion	Project No: Date: Tested by:	78245.02 10-Oct-1 BS	
Test Locatio Description: Material type: Condition of g Weather durin	Test Pit 12 Brown, Sar ground surface		Humic y	1	Test No. Easting: Northing Surface Level:	124A 703874 8628673 -	m m m AHD
Depth of auge	stant water belo	n ow permeamete	500 er 300 95		epth to impermeable layer me from filling to start	0.5	m minutes
Fest Results							
	Time	Level below top	Flow Volume	Rate of Loss [Q]]		
	(minutes)	(mm)	(cm ³)	(cm ³ /min)	-		
	0	0	0		_		
	1.0 2.0	90 185	<u>638</u> 1311	638 656	_		
	3.0	270	1914	638			
	4.0 5.0	365 455	2587 3225	647 645	_		
	6.0	545	3863	644	_		
	7.0	640	4536	648			
	Totals	270	1914	638	Overall		
	658 656 654 654 640 648 644 644 644 644 638 638 636 0.0	1.0 2.0		4.0 5.0 ninutes)	6.0 7.0 8.0		
	= 2.82E-			K = 4.4Q[0.5 sin	h ⁻¹ (H/2r)-√[(r/H) ² +0.25]+r/H]/2	$2\pi H^2$	
	= 4.69E-			ref. AS1547-20	12 App G		
	= 4.06	6 m/day					

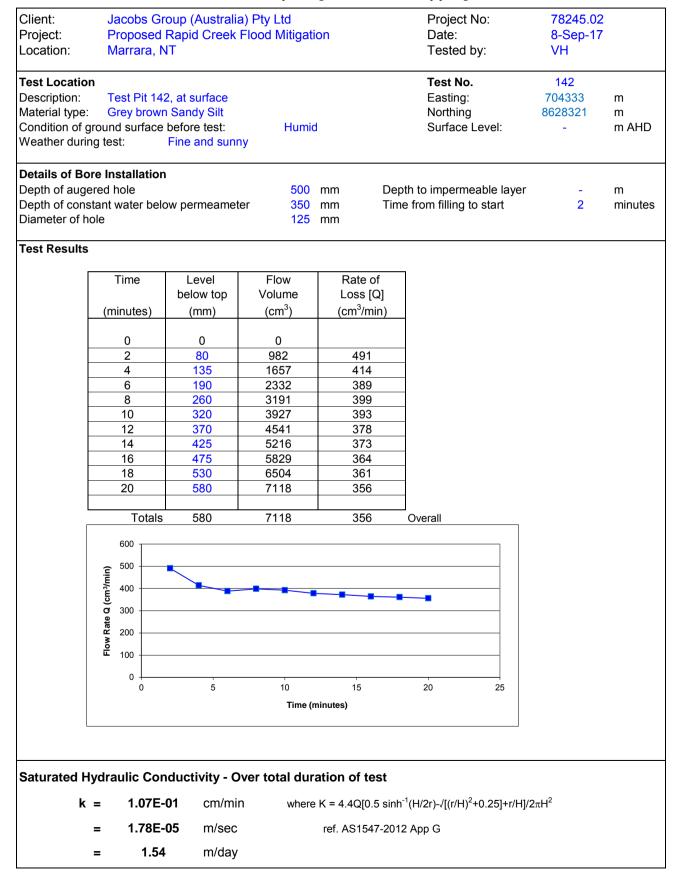


Client: Project: Location:	Propo		p (Australia pid Creek	a) Pty Ltd Flood Mitigati	on	Project No: Date: Tested by:	78245.02 10-Oct-17 BS	
Test Locatic Description: Material type Condition of Weather duri	Test F Browr ground su	n <mark>and ye</mark> l rface be	it surface low brown, s fore test: he and sunn	Humic	I	Test No. Easting: Northing Surface Level:	126 703976 8628713 -	m m m AHD
Details of Bo Depth of aug Depth of con Diameter of I	jered hole istant wate		permeamete	500 er 320 95		Depth to impermeable layer Fime from filling to start	0.5	m minutes
Test Results	S							
	Time (minute	ł	Level below top (mm)	Flow Volume (cm ³)	Rate of Loss [Q] (cm ³ /min)	,		
	0		0 260	0 1843	1843			
	2.0 3.0		470 650	3331 4607	1666 1536			
	T	otals	650	4607	1536	Overall		
	1900 1850 1750 0 1700 1650 0 1650							
	1600 1550 1500	0.0	0.5 1	.0 1.5 Time (n	2.0 ninutes)	2.5 3.0 3.5		
	-		-	ver total dur			2	
k	= 1.	21E-01 04E-04		1 where	K = 4.4Q[0.5 s ref. AS1547-2	inh ⁻¹ (H/2r)-√[(r/H) ² +0.25]+r/H]/2 2012 App G	2πH	
	=	8.94	m/day					

Client: Project: Location:		roup (Australi Rapid Creek NT		ion	Project No: Date: Tested by:	78245.02 10-Oct-1 BS	
Test Locatic Description: Material type Condition of Weather duri	Test Pit 12 Brown and ground surface	26, at surface I yellow brown, before test: Fine and sunr	Humid	1	Test No. Easting: Northing Surface Level:	126A 703976 8628713 -	m m m AHD
Depth of aug	stant water bel	n ow permeamet	500 er 320 95		epth to impermeable layer ime from filling to start	- 0.5	m minutes
Fest Results	6						
	Time (minutes)	Level below top (mm)	Flow Volume (cm ³)	Rate of Loss [Q] (cm ³ /min)			
	0	0 190	0 1347	1347			
	2.0 3.0	375 550	2658 3899	1329 1300			
	Totals	550	3899	1300	Overall		
	1350 1340 1340 1330						
	o 1320 b 1310 b 1310 b 1300 c 1300						
	1290 0.0	0.5	1.0 1.5 Time (r	2.0 ninutes)	2.5 3.0 3.5		
	a = 5.26E	nductivity - C -01 cm/mi			nh ⁻¹ (H/2r)-√[(r/H) ² +0.25]+r/H]/:	2 ∞ Н ²	
ĸ	= 5.26E = 8.76E			ref. AS1547-20		-7011	
	= 7.5	7 m/day					

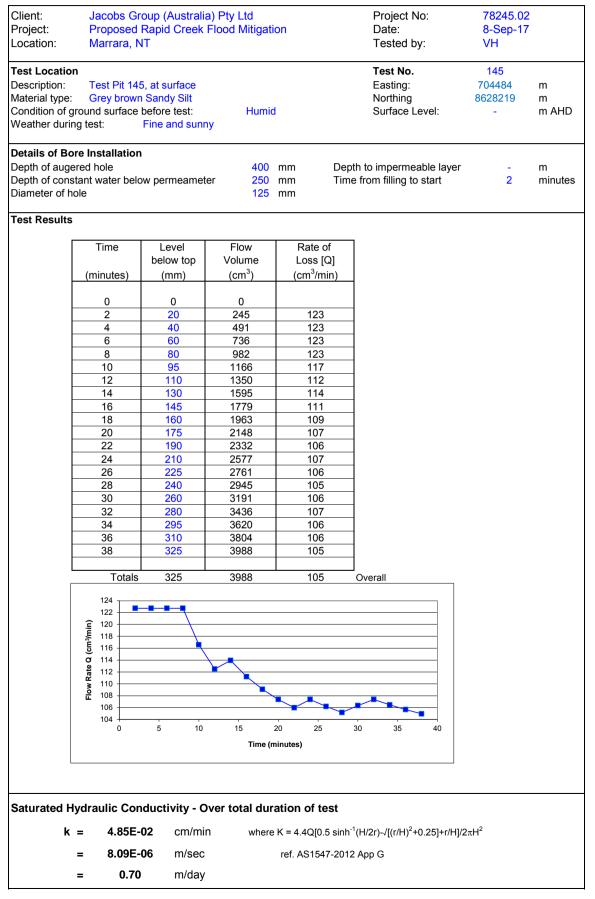
Client: Project: Location:			a) Pty Ltd Flood Mitigati	on	Project No: Date: Tested by:	78245.02 10-Oct-17 BS	
Test Locatic Description: Material type Condition of Weather duri	Test Pit 13 Grey and y ground surface		lightly clayey S Humic וא		Test No. Easting: Northing Surface Level:	137 704114 8628611 -	m m m AHD
Depth of aug	stant water bel	n ow permeamet	500 er 360 95	•	th to impermeable layer e from filling to start	0.5	m minutes
Test Results	6						
	Time	Level below top	Flow Volume	Rate of Loss [Q]			
	(minutes)	(mm)	(cm ³)	(cm ³ /min)	-		
	0 0.5	0 130	0 921	1843			
	1.0	260	1843	1843	-		
	1.5 2.0	390 510	2764 3615	1843 1807	-		
	2.5 3.0	620 740	4395 5245	1758 1748			
	Totals	s 740	5245	1748	Overall		
	1860 (uiuu) 1840 0 1820 0 1800	•	•				
	8 1000 8 1780 1760 1760 1740				•		
	0.0	0.5	1.0 1.5 Time (n	2.0 2.5 ninutes)	3.0 3.5		
Saturated	Hydraulic Co	nductivity - (Over total dur	ration of test			
	x = 6.01E	-			¹ (H/2r)-√[(r/H) ² +0.25]+r/H]/2	πH^2	
n		J. J. J.	where		(<u>-</u>), ((), .0.20],]/2	/··· •	
	= 1.00E	-04 m/sec		ref. AS1547-2012	2 App G		

Client: Project: Location:			a) Pty Ltd Flood Mitigati	ion	Project No: Date: Tested by:	78245.02 10-Oct-1 BS	
Test Location Description: Material type Condition of Weather dur	Test Pit 13 Grey and y ground surface		lightly clayey S Humic ıy		Test No. Easting: Northing Surface Level:	137A 704114 8628611 -	m m m AHD
Depth of aug	stant water belo		500 er 360 95		oth to impermeable layer e from filling to start	- 0.5	m minutes
Test Result	S						
	Time (minutes)	Level below top (mm)	Flow Volume (cm ³)	Rate of Loss [Q] (cm ³ /min)]		
					-		
	0 1.0 2.0	0 165 365	0 1170 2587	1170 1294	-		
	3.0 4.0	545 730	3863 5174	1288 1294	-		
					-		
	Totals	730	5174	1294	Overall		
	1300 1280 1280 1260 1240 0 1220 1220 1200 1180 1160 0.0	0.5 1.0	1.5 2.0	2.5 3.0	3.5 4.0 4.5		
			Time (r	ninutes)			
Saturated	Hydraulic Co	nductivity - C)ver total dur	ation of test			
ŀ	k = 4.45E·	- 01 cm/mi	n where	K = 4.4Q[0.5 sinh	^{.1} (H/2r)-√[(r/H) ² +0.25]+r/H]/2	$2\pi H^2$	
	= 7.41E-	-05 m/sec		ref. AS1547-2012	2 App G		
I	= 6.40) m/day					


Proposed	Rapid Creek	a) Pty Ltd Flood Mitigati	ion	Project No: Date: Tested by:	78245.02 8-Sep-17 VH	
e: Grey brown ground surface	Silty Sandy G	Humic	1	Test No. Easting: Northing Surface Level:	138 704248 8628472 -	m m m AHD
gered hole		er 350	mm Tim		- 2	m minutes
s						
Time	Level below top	Flow Volume	Rate of Loss [Q]]		
(minutes)	(mm)	(cm°)	(cm°/min)	-		
0	0	0		_		
				_		
6	185	2270	378	-		
8	240	2945	368			
				_		
				-		
16	460	5645	353	_		
Totals	460	5645	353	Overall		
410 400 390 380 370 350 0	2 4	6 8 Time (r	10 12 ninutes)	14 16 18		
k = 1.06E-	01 cm/mii 05 m/sec	n where	e K = 4.4Q[0.5 sinh		rπH ²	
	Marrara, N Test Pit 138 S Test Pit 138 S Test Pit 138 Test Pit 138 Test Pit 138 S Time (minutes) 0 2 4 6 8 10 12 4 6 8 10 12 14 16 Totals Marrara, N S S S S S S S S S S S S S	Marrara, NT on Test Pit 138, at surface ground surface before test: ing test: Fine and sum ore Installation greed hole Istant water below permeameter hole s Time Level below top (minutes) (mm) 0 0 2 65 4 125 6 185 8 240 10 295 12 350 14 405 16 460 Totals 460	Marrara, NT Test Pit 138, at surface s: Grey brown Silty Sandy Gravel ground surface before test: Humic ing test: Fine and sunny ore Installation gered hole 500 stant water below permeameter 350 hole 125 s Time Level Flow Volume (minutes) (mm) (cm ³) 0 0 0 0 2 65 798 4 125 1534 6 185 2270 8 240 2945 10 295 3620 12 350 4295 14 405 4970 16 460 5645 Totals 460 5645	Dr Test Pit 138, at surface is: Grey brown Silty Sandy Gravel ground surface before test: Humid ing test: Fine and sunny Dre Installation pered hole 500 mm Dep stant water below permeameter 350 mm Tim hole 125 mm S Time Level Flow Rate of Loss [Q] (minutes) (mm) (cm ³) (cm ³ /min) 0 0 0 0 2 65 798 399 4 125 1534 383 6 185 2270 378 8 240 2945 3682 10 295 3620 362 12 350 4295 358 14 405 4970 355 16 460 5645 353 Totals 460 5645 353 Totals 460 5645 353 Totals 460 5645 353 Totals 460 5645 353 Humid test for the formula test formula test formula test for the formula test for the formula test formula test formula test formula test formula test formula tes	Marrara, NT Tested by: The Test Pit 138, at surface Test Pit 138, at surface Test Pit 138, at surface Test No. Easting: Northing Surface Level: Northing Surface Level: Northing Surface Level: Time from filling to start to below top to impermeable layer Time from filling to start 125 mm Time from filling to start 125 mm S Time to below top Volume Level Flow Rate of Loss [Q] (cm ³ /min) 0 0 0 0 2 65 798 399 4 125 1534 383 6 185 2270 378 8 240 2945 368 10 295 3620 362 12 350 4295 3620 12 350 4295 368 10 295 3620 362 14 405 44970 3355 16 460 5645 353 Totals 46	Marrara, NT Tested by: VH on Test Pit 138, at surface 138 : Grey brow Sithy Sandy Gravel For Surface before test: 704248 ground surface before test: Humid Surface Level: - ore Installation 500 mm Depth to impermeable layer - pred hole 500 mm Depth to impermeable layer - total 125 mm Time from filling to start 2 ore 6 125 mm Time from filling to start 2 or 0 0 0 - - indication (cm ³ /min) - - - of 0 0 - - - stant water below permeameter 360 mm Depth to impermeable layer - - stant water below top Volume Loss [0] - - - - field 125 1534 383 - - - - - 12 360 5645 353 - - - - of

Douglas Partners Pty Ltd West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Client: Project: Location:	Jacobs Group (Australia) Pty Ltd Proposed Rapid Creek Flood Mitigation Marrara, NT				Project No: Date: Tested by:	78245.02 8-Sep-17 VH		
Test Location Description: Material type Condition of Weather dur	Test P : Grey b ground sur	face befo	/ Sandy G	Humid	I	Test No. Easting: Northing Surface Level:	138A 704248 8628472 -	m m m AHD
Details of B Depth of aug Depth of con Diameter of	gered hole Istant water		ermeamet	er <u>350</u>		epth to impermeable layer ne from filling to start	- 2	m minutes
Test Result	S							
	Time		_evel low top	Flow Volume	Rate of Loss [Q]	7		
	(minute	s) ((mm)	(cm ³)	(cm ³ /min)	_		
	0		0	0				
	2		105	1289	644			
	4		195	2393	598	_		
	6		280 360	3436 4418	573 552	_		
	10		430	5277	528	_		
	12		495	6075	506			
	LTo	otals	495	6075	506	Overall		
	- 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000							
	- 200 - 100 - 0 - 0)	2	4 6	8 1	0 12 14		
				Time (n	ninutes)			
Saturated I	Hvdraulic	Conduc	tivitv - O	over total dura	ation of test			
	-	52E-01	cm/mi			h ⁻¹ (H/2r)-√[(r/H) ² +0.25]+r/H]/2	$^{2}\pi H^{2}$	
,					ref. AS1547-2012 App G			
					101. AO 1047-20	12 App O		
	=	2.18	m/day					



Client: Project: Location:	oject: Proposed Rapid Creek Flood Mitigation				Project No: Date: Tested by:	78245.02 8-Sep-17 VH	
Test Locatic Description: Material type Condition of Weather duri	Test Pit 14 Grey browr ground surface	2, at surface 1 Sandy Silt before test: Fine and sunn	Humic Y	I	Test No. Easting: Northing Surface Level:	142A 704333 8628321 -	m m m AHD
Depth of aug	stant water belo		500 er 350 125	mm Tin	pth to impermeable layer ne from filling to start	- 2	m minutes
Test Results	S						
	Time	Level below top	Flow Volume	Rate of Loss [Q]]		
	(minutes)	(mm)	(cm ³)	(cm ³ /min)	_		
	0	0 60	0 736	368	_		
	4	115	1411	353	_		
	6 8	170 220	2086 2700	348 337	-		
	0 10	265	3252	325	_		
	10	310	3804	317	_		
	14	360	4418	316			
	16	410	5031	314			
	Totals	410	5031	314	Overall		
	380 370 370 350 350 340 330 320 310 310 0	2 4	6 8 Time (n	10 12 ninutes)	14 16 18		
	Hydraulic Cor = 9.42E- = 1.57E-	02 cm/mir 05 m/sec			n ^{−1} (H/2r)-√[(r/H) ² +0.25]+r/H]/: 12 App G	$2\pi H^2$	
	= 1.36	m/day					

Appendix B

Laboratory Test Results

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 231 Normanby Road PO Box 5051 South Melbourne VIC 3205 Phone (03) 9673 3500 Fax (03) 9673 3599

Results of Falling Head Permeability Test

Client: Project:	Jacobs Group (Australia) Pty Lt MARRARA Flood Mitigation Addit	Project No: Report No: Report Date:	78245.02 M17270010 16-Nov-2017			
Location:	Cnr Henry Wrigley DrV & McMillar	Date Sampled: Date of Test: Page:	- 08-Nov-2017 1 of 1			
	Location:	WR17-528I				
	Depth	0-0.5(m)				
	Sample Description:	Clayey sandy GRAVEL				
	Sample Preparation:	Remoulded to 100 @ 99% Optimum				
	Placement Dry Density:	1.98 t/m ³				
	Placement Moisture Content:		11.9 %			
	Final Moisture Content:		14.4 %			
	Maximum Hydraulic Gradient:		9			
	Minimum Hydraulic Gradient:		7			
	Coefficient of Permeability:		2x10 ⁻¹⁰ m/s	sec		

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

A NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested: CP Checked: AG

Peter Chan Associate

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 231 Normanby Road PO Box 5051 South Melbourne VIC 3205 Phone (03) 9673 3500 Fax (03) 9673 3599

Results of Falling Head Permeability Test

Client: Project:	Jacobs Group (Australia) Pty Lt MARRARA Flood Mitigation Addit	Project No: Report No: Report Date: Date Sampled:	78245.02 M17270011 16-Nov-2017			
Location:	Cnr Henry Wrigley DrV & McMilla	Cnr Henry Wrigley DrV & McMillans Rd, MARRARA				
	Location:	WR17-528J				
	Depth	0.4-0.9(m)				
* 3	Sample Description:	Clayey sandy GRAVEL				
	Sample Preparation:	Remoulded to 100% Modified Maximum Dry Density @ 100% Optimum Moisture Content				
	Placement Dry Density:	1.89 t/m ³				
	Placement Moisture Content:		15.4 %			
	Final Moisture Content:		16.4 %			
	Maximum Hydraulic Gradient:		8			
	Minimum Hydraulic Gradient:		8			
	Coefficient of Permeability:		2x10 ⁻¹⁰ m/	sec		

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 Tested: CP Checked: AG

Peter Chan Associate

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270012 16-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMilla	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 08-Nov-2017 1 of 1
	Location:	WR17-528K		
	Depth	0.1-0.4(m)		
	Sample Description:	Sandy CLAY		
	Sample Preparation:	Remoulded to 100 @ 101% Optimum		
	Placement Dry Density:		1.84 t/m ³	
	Placement Moisture Content:		17.7 %	
	Final Moisture Content:		18.9 %	
	Maximum Hydraulic Gradient:		7	
	Minimum Hydraulic Gradient:		6	
	Coefficient of Permeability:		2x10 ⁻¹⁰ m/	sec

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

has

Peter Chan Associate

Results of Falling Head Permeability Test

Client: Project:	Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		Project No: Report No: Report Date:	78245.02 M17270009 09-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMillar	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 03-Nov-2017 1 of 1
	Location:	WR17-528H		
	Depth	0.9-1.9(m)		
	Sample Description:	Sandy CLAY		
	Sample Preparation:	Remoulded to 100 @ 101% Optimun		
	Placement Dry Density:		1.80 t/m ³	
	Placement Moisture Content:		17.1 %	
	Final Moisture Content:		20.1 %	
	Maximum Hydraulic Gradient:		8	
	Minimum Hydraulic Gradient:		7	
	Coefficient of Permeability:		2x10 ⁻¹⁰ m/s	sec

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Samp[led by Engineering DepartmentRemarks:

NATA NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Peter Chan Associate

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270013 16-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMillar	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 08-Nov-2017 1 of 1
	Location:	WR17-528L		
	Depth	0.1-0.3(m)		
	Sample Description:	Sandy GRAVEL		
	Sample Preparation:	Remoulded to 100 Density @ 101%		
	Placement Dry Density:		2.25 t/m ³	
	Placement Moisture Content:		9.1 %	
	Final Moisture Content:		12.1 %	
	Maximum Hydraulic Gradient:		8	
	Minimum Hydraulic Gradient:		2	
	Coefficient of Permeability:		3x10 ⁻⁸ m/s	sec

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Peter Chan Associate

Results of Falling Head Permeability Test

Client: Project:	Jacobs Group (Australia) Pty Lt MARRARA Flood Mitigation Addit		Project No: Report No: Report Date:	78245.02 M17270003 08-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMillar	Cnr Henry Wrigley DrV & McMillans Rd, MARRARA		- 31-Oct-2017 1 of 1
	Location:	WR17-528B		
	Depth	0.1-0.4		
	Sample Description:	Sandy clayey GR	AVEL	
	Sample Preparation:	Remoulded to 100 @ 99% Optimum		
	Placement Dry Density:		2.30 t/m ³	
	Placement Moisture Content:		7.5 %	
	Final Moisture Content:		8.8 %	
	Maximum Hydraulic Gradient:		8	
	Minimum Hydraulic Gradient:		6	
	Coefficient of Permeability:		5x10 ⁻¹⁰ m/	sec

Test Method(s): AS 1289.6.7 Sampling Method(s): Sampled by Remarks:

AS 1289.6.7.2, AS 1289.2.1.1 Sampled by Engineering Department

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

A. K. Mrz

Andrew Murphy Senior Associate

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270004 08-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMilla	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 31-Oct-2017 1 of 1
	Location:	WR17-528C		
	Depth	0.3-0.6		
	Sample Description:	Gravelly sandy ca	lyey SILT	
	Sample Preparation:	Remoulded to 100 @ 100% Optimun		
	Placement Dry Density:		1.87 t/m ³	
	Placement Moisture Content:		15.0 %	
	Final Moisture Content:		17.8 %	
	Maximum Hydraulic Gradient:		9	
	Minimum Hydraulic Gradient:		8	
	Coefficient of Permeability:		3x10 ⁻¹⁰ m/	sec

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

A. K. M.M.

Andrew Murphy Senior Associate

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270002 08-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMillar	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 31-Oct-2017 1 of 1
	Location:	WR17-528A		
	Depth	0.8-1.4(m)		
	Sample Description:	Clayey sandy GRA	AVEL	
	Sample Preparation:	Remoulded to 100 @ 101% Optimum		
	Placement Dry Density:		1.99 t/m ³	
>	Placement Moisture Content:		12.6 %	
	Final Moisture Content:		16.1 %	
	Maximum Hydraulic Gradient:		9	
	Minimum Hydraulic Gradient:		4	
	Coefficient of Permeability:		2x10 ⁻⁹ m/s	sec

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested: CP Checked: AG

A.A. M.M.

Andrew Murphy Senior Associate

Г

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270008 09-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMilla	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 03-Nov-2017 1 of 1
	Location:	WR17-528G		
	Depth	0.3-0.6(m)		
	Sample Description:	Sandy clayey GR	AVEL	
	Sample Preparation:	Remoulded to 100 @ 101% Optimun		
	Placement Dry Density:		2.20 t/m ³	
	Placement Moisture Content:		9.6 %	27
	Final Moisture Content:		11.2 %	
	Maximum Hydraulic Gradient:		8	
	Minimum Hydraulic Gradient:		3	
	Coefficient of Permeability:		1x10 ⁻⁹ m/	sec

Test Method(s): As Sampling Method(s): Sa Remarks:

AS 1289.6.7.2, AS 1289.2.1.1 Sampled by Engineering Department

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Peter Chan Associate

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270005 08-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMillar	Cnr Henry Wrigley DrV & McMillans Rd, MARRARA		- 31-Oct-0217 1 of 1
	Location:	WR17-528D		
	Depth	0.1-0.8		
	Sample Description:	Gravelly CLAY		
	Sample Preparation:	Remoulded to 100 @ 99% Optimum		num Dry Density
	Placement Dry Density:		1.85 t/m ³	
	Placement Moisture Content:		15.4 %	
	Final Moisture Content:		16.8 %	
	Maximum Hydraulic Gradient:		9	
	Minimum Hydraulic Gradient:		5	
	Coefficient of Permeability:		4x10 ⁻¹⁰ m/s	sec
		. <u>N</u>		

Test Method(s): Sampling Method(s): Remarks:

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory Number: 828

AS 1289.6.7.2, AS 1289.2.1.1

Sampled by Engineering Department

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested: CP Checked: AG

A.R. M

Andrew Murphy Senior Associate

Г

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270006 08-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMillar	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 31-Oct-2017 1 of 1
	Location:	WR17-528E		
	Depth	0.3-1.0		
	Sample Description:	Sandy CLAY		
				s -
	Sample Preparation:	Remoulded to 100 @ 99% Optimum		num Dry Density
	Placement Dry Density:		1.94 t/m ³	
	Placement Moisture Content:		11.4 %	
	Final Moisture Content:		14.9 %	
	Maximum Hydraulic Gradient:		9	
	Minimum Hydraulic Gradient:		5	
	Coefficient of Permeability:		4x10 ⁻¹⁰ m/s	sec

Test Method(s):AS 1289.6.7.2, AS 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

ACCREDITED FOR TECHNICAL COMPETENCE

NATA Accredited Laboratory Number: 828 The results of the tests, calibrations and/or

measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Tested: CP Checked: AG

A. A.M.

Andrew Murphy Senior Associate

Г

Results of Falling Head Permeability Test

Client: Project:		Jacobs Group (Australia) Pty Ltd MARRARA Flood Mitigation Additional Geo		78245.02 M17270007 16-Nov-2017
Location:	Cnr Henry Wrigley DrV & McMilla	ns Rd, MARRARA	Date Sampled: Date of Test: Page:	- 03-Nov-2017 1 of 1
r.	Location:	WR17-528F/B		
	Depth	0.3-1.2(m)		
	Sample Description:	Sandy clayey SIL	Т	
	Sample Preparation:	Remoulded to 989 @ 101% Optimun		
	Placement Dry Density:		1.55 t/m ³	
	Placement Moisture Content:		11.6 %	
	Final Moisture Content:		13.2 %	
	Maximum Hydraulic Gradient:		9	
	Minimum Hydraulic Gradient:		6	
	Coefficient of Permeability:		2x10 ⁻¹⁰ m/s	sec

Test Method(s):AS 1289.6.7.2, as 1289.2.1.1Sampling Method(s):Sampled by Engineering DepartmentRemarks:

NATA Accredited Laboratory Number: 828

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025

Peter Chan Associate

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528A
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	123 (0.8 - 1.4m)
Material:	Clayey Sandy Gravel

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max	
Preparation Method	Dry Sieve			
Sample History	Air Dried			
Liquid Limit (%)	44			
Plastic Limit (%)	18			
Plasticity Index (%)	26			
Linear Shrinkage (AS1289 3.4.1)		Min	Max	
Linear Shrinkage (%)	11.0			
Cracking Crumbling Curling	Cracking Crumbling Curling Cracking			
Dry Density - Moisture Relationship	(AS 1289 5.2.1 & 2.	1.1)		
Mould Type	1 LITRE	RE MOULD A		
Compaction	Мс	Modified		
No. Layers		5		
No. Blows / Layer		25		
Maximum Dry Density (t/m ³)		1.99		
Optimum Moisture Content (%)		12.5		
Oversize Sieve (mm)		19		
Oversize Material (%)		0		

Control Contro

WORLD RECOGNISED

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528B
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	118 (0.1 - 0.4m)
Material:	Sandy Gravel

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max		
Preparation Method	Dry Sieve				
Sample History	Air Dried				
Liquid Limit (%)	19				
Plastic Limit (%)	12				
Plasticity Index (%)	7				
Linear Shrinkage (AS1289 3.4.1)		Min	Max		
Linear Shrinkage (%)	3.0				
Cracking Crumbling Curling	Cracking				
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)					
Mould Type	1 LITRE	MOUL	DA		
Compaction	Мо	Modified			
No. Layers		5			
No. Blows / Layer		25			
Maximum Dry Density (t/m ³)	2	2.31			
Optimum Moisture Content (%)	-	7.5			
Oversize Sieve (mm)	1	19.0			
Oversize Material (%)	(0.0			

Control Contro

WORLD RECOGNISED

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528C
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	122 (0.3 - 0.6m)
Material:	Gravelly Sandy Silt

Atterberg Limit (AS1289 3.1.2 & 3	.2.1 & 3.3	.1)	Min	Max	
Preparation Method	Dr	y Sieve			
Sample History	Ai	ir Dried			
Liquid Limit (%)		48			
Plastic Limit (%)		25			
Plasticity Index (%)		23			
Linear Shrinkage (AS1289 3.4.1)			Min	Max	
Linear Shrinkage (%)		10.5			
Cracking Crumbling Curling		Cracking			
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)					
Mould Type		1 LITR	E MOUL	DA	
Compaction		Modified			
No. Layers		5			
No. Blows / Layer		25			
Maximum Dry Density (t/m ³)		1.87			
Optimum Moisture Content (%)		15.0			
Oversize Sieve (mm)		19.0			
Oversize Sieve (mm)			19.0		

Control Contro

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528D
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	140 (0.1 - 0.8m)
Material:	Gravelly Clay

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max		
Preparation Method	Dry Sieve				
Sample History	Air Dried				
Liquid Limit (%)	34				
Plastic Limit (%)	17				
Plasticity Index (%)	17				
Linear Shrinkage (AS1289 3.4.1)		Min	Max		
Linear Shrinkage (%)	7.5				
Cracking Crumbling Curling	Cracking				
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)					
Mould Type	1 LITRE	MOUL	DA		
Compaction	Мо	Modified			
No. Layers		5			
No. Blows / Layer		25			
Maximum Dry Density (t/m ³)	1	1.85			
Optimum Moisture Content (%)	1	15.5			
Oversize Sieve (mm)	1	19.0			
Oversize Material (%)		0.0			

Control Contro

WORLD RECOGNISED

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528E
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	142 (0.3 - 1.0m)
Material:	Sandy Clay

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max		
Preparation Method	Dry Sieve				
Sample History	Air Dried				
Liquid Limit (%)	31				
Plastic Limit (%)	17				
Plasticity Index (%)	14				
Linear Shrinkage (AS1289 3.4.1)		Min	Max		
Linear Shrinkage (%)	7.0				
Cracking Crumbling Curling	Cracking				
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)					
Mould Type	1 LITRE	MOUL	DA		
Compaction	Мо	Modified			
No. Layers		5			
No. Blows / Layer		25			
Maximum Dry Density (t/m ³)	1	1.94			
Optimum Moisture Content (%)	1	11.5			
Oversize Sieve (mm)	1	19.0			
Oversize Material (%)		0.0			

Control Contro

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528F
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	143 (0.3 - 1.2m)
Material:	Sandy Silt

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max		
Preparation Method	Dry Sieve				
Sample History	Air Dried				
Liquid Limit (%)	28				
Plastic Limit (%)	13				
Plasticity Index (%)	15				
Linear Shrinkage (AS1289 3.4.1)		Min	Max		
Linear Shrinkage (%)	6.5				
Cracking Crumbling Curling	Cracking				
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)					
Mould Type	1 LITRE	MOUL	DA		
Compaction	Mo	Modified			
No. Layers		5			
No. Blows / Layer		25			
Maximum Dry Density (t/m ³)	1	1.59			
Optimum Moisture Content (%)	1	11.5			
Oversize Sieve (mm)	1	19.0			
Oversize Material (%)		0.0			

Control Contro

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528G
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	124 (0.3 - 0.6m)
Material:	Sandy Gravel

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max		
Preparation Method	Dry Sieve				
Sample History	Air Dried				
Liquid Limit (%)	25				
Plastic Limit (%)	15				
Plasticity Index (%)	10				
Linear Shrinkage (AS1289 3.4.1)		Min	Max		
Linear Shrinkage (%)	4.5				
Cracking Crumbling Curling	Cracking				
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)					
Mould Type	1 LITRE	MOUL	DA		
Compaction	Mc	Modified			
No. Layers		5			
No. Blows / Layer		25			
Maximum Dry Density (t/m ³) 2.20		2.20			
Dptimum Moisture Content (%) 9.5					
Oversize Sieve (mm)	e Sieve (mm) 19.0				
Oversize Material (%)		0.0			

Control Contro

WORLD RECOGNISED

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528H
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	108 (0.9 - 1.9m)
Material:	Sandy Clay

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max	
Preparation Method	Dry Sieve			
Sample History	Air Dried			
Liquid Limit (%)	42			
Plastic Limit (%)	16			
Plasticity Index (%)	26			
Linear Shrinkage (AS1289 3.4.1)		Min	Max	
Linear Shrinkage (%)	7.0			
Cracking Crumbling Curling	None	None		
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)				
Mould Type	1 LITRE	MOUL	DA	
Compaction	Мс	Modified		
No. Layers		5		
No. Blows / Layer		25		
Maximum Dry Density (t/m ³)		1.80		
Optimum Moisture Content (%)		17.0		
Oversize Sieve (mm)		19.0		
Oversize Material (%)		0.0		

Control Contro

WORLD RECOGNISED

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-5281
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	101 (0 - 0.5m)
Material:	Filling - Clayey Sandy Gravel

Atterberg Limit (AS1289 3.1.2 & 3.2	3.1)	Min	Max	
Preparation Method	D	ry Sieve		
Sample History	A	ir Dried		
Liquid Limit (%)		30		
Plastic Limit (%)		17		
Plasticity Index (%)		13		
Linear Shrinkage (AS1289 3.4.1)			Min	Max
Linear Shrinkage (%)	e (%) 5.5			
Cracking Crumbling Curling		None		
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)				
Mould Type		1 LITRE MOULD A		
Compaction		Modified		
No. Layers		5		
No. Blows / Layer		25		
Maximum Dry Density (t/m ³)		1.98		
Optimum Moisture Content (%)		12.0		
Oversize Sieve (mm)		19		
Oversize Material (%)			0	

Control Contro

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528J
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	103 (0.4 - 0.9m)
Material:	Filling - Clayey Sandy Gravel

Atterberg Limit (AS1289 3.1.2 & 3	3.1)	Min	Max	
Preparation Method	D	ry Sieve		
Sample History	A	Air Dried		
Liquid Limit (%)		44		
Plastic Limit (%)		19		
Plasticity Index (%)		25		
Linear Shrinkage (AS1289 3.4.1)			Min	Max
Linear Shrinkage (%)				
Cracking Crumbling Curling		Cracking		
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)				
Mould Type		1 LITRE MOULD A		
Compaction		Modified		
No. Layers		5		
No. Blows / Layer		25		
Maximum Dry Density (t/m ³)		1.89		
Optimum Moisture Content (%)		15.5		
Oversize Sieve (mm)		19.0		
Oversize Material (%)			0.0	

Control Contro

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528K
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	103 (0.1 -0.4m)
Material:	Filling - Sandy Clay

Atterberg Limit (AS1289 3.1.2 & 3.2	2.1 & 3.3.1)	Min	Max	
Preparation Method	Dry Sieve			
Sample History	Air Dried			
Liquid Limit (%)	40			
Plastic Limit (%)	17			
Plasticity Index (%)	23			
Linear Shrinkage (AS1289 3.4.1)		Min	Max	
Linear Shrinkage (%)	7.5			
Cracking Crumbling Curling	None	None		
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)				
Mould Type	1 LITRE	MOUL	DA	
Compaction	Мо	Modified		
No. Layers		5		
No. Blows / Layer		25		
Maximum Dry Density (t/m ³)	1	1.84		
Optimum Moisture Content (%)	1	17.5		
Oversize Sieve (mm)		19		
Oversize Material (%)		0		

Control Contro

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Sample Number:	17-528L
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Sample Location:	116 (0.1 - 0.3m)
Material:	Sandy Gravel

Atterberg Limit (AS1289 3.1.2 & 3.2	Min	Max		
Preparation Method	Dry Sieve			
Sample History	Air Dried			
Liquid Limit (%)	15			
Plastic Limit (%)	12			
Plasticity Index (%)	3			
Linear Shrinkage (AS1289 3.4.1)		Min	Max	
Linear Shrinkage (%)	1.0			
Cracking Crumbling Curling	Cracking	Cracking		
Dry Density - Moisture Relationship (AS 1289 5.2.1 & 2.1.1)				
Mould Type	1 LITRE	MOUL	DA	
Compaction	Мо	Modified		
No. Layers		5		
No. Blows / Layer		25		
Maximum Dry Density (t/m ³)		2.25		
Optimum Moisture Content (%)		9.0		
Oversize Sieve (mm)		19		
Oversize Material (%)		0		

Control Contro

WORLD RECOGNISED

Report Number:	78245.02-1
Issue Number:	1
Date Issued:	09/11/2017
Client:	Jacobs Group (Australia) Pty Ltd
	452 Flinders Street, Melbourne VIC 3000
Project Number:	78245.02
Project Name:	Proposed Rapid Creek Flood Mitigation Additional Geotechnical Investigation
Project Location:	Cnr Henry Wrigley Drive & McMillans Road, MARRARA
Work Request:	528
Date Sampled:	05/09/2017
Sampling Method:	Sampled by Engineering Department
Material:	Various Update

Approved Signatory: Clare Whelan Lab Manager NATA Accredited Laboratory Number: 828

Moisture Content AS	1289 2.1.1		
Sample Number	Sample Location	Moisture Content	Material
17-528A	123 (0.8 - 1.4m)	12.1 %	Clayey Sandy Gravel
17-528B	118 (0.1 - 0.4m)	4.9 %	Sandy Gravel
17-528C	122 (0.3 - 0.6m)	12.0 %	Gravelly Sandy Silt
17-528D	140 (0.1 - 0.8m)	10.8 %	Gravelly Clay
17-528E	142 (0.3 - 1.0m)	12.5 %	Sandy Clay
17-528F	143 (0.3 - 1.2m)	9.7 %	Sandy Silt
17-528G	124 (0.3 - 0.6m)	5.7 %	Sandy Gravel
17-528H	108 (0.9 - 1.9m)	19.7 %	Sandy Clay
17-5281	101 (0 - 0.5m)	8.0 %	Filling - Clayey Sandy Gravel
17-528J	103 (0.4 - 0.9m)	12.1 %	Filling - Clayey Sandy Gravel
17-528K	103 (0.1 -0.4m)	-7.2 %	Filling - Sandy Clay
17-528L	116 (0.1 - 0.3m)	4.7 %	Sandy Gravel

Douglas Partners Geotechnics | Environment | Groundwater

Douglas Partners Pty Ltd Darwin Laboratory

Phone: (08) 8948 6800 Fax: (08) 8948 6899

Appendix C

Drawing 1 – Test Location Plan

